Low-Voltage-Stress AC-Linked Charge Equalizing System for a Series-Connected VRLA Battery String

Charnyut Karnjanapiboon*,†, Kamon Jirasereamornkul* and Veerapol Monyakul**

*Dept. of Electronic and Telecommunication Eng., King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
**Dept. of Pilot Plant Research and Development Unit (BEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand

Abstract

This paper presents a low voltage-stress AC-linked charge equalizing system for balancing the energy in a serially connected, valve-regulated lead acid battery string using a modular converter that consisted of multiple transformers coupled together. Each converter was coupled through an AC-linked bus to increase the overall energy transfer efficiency of the system and to eliminate the problem of unbalanced charging of the batteries. Previous solutions are based on centralized and modularized topologies. A centralized topology requires the redesign of hardware and related components and also faces a high voltage stress when the number of battery is expanded. The modularized solutions use low-voltage-stress, double-stage, DC-linked topologies leading to poor energy transfer efficiency. The proposed solution used a low-voltage stress, AC-linked, modularized topology that made adding more batteries easier and had a better energy transfer efficiency. To ensure that the charge equalization system smoothly operated and safely charged the batteries, a small intelligent microcontroller was used in the control section. The efficiency of this charge equalization system was 85%, which is 21% better than other low-voltage-stress DC-linked charging techniques. The validity of this approach was confirmed by experimental results.

Key words: Battery management system, Charge equalization system, Synchronous forward converter

I. INTRODUCTION

The demand for applications powered by a valve-regulated lead acid (VRLA) battery has increased rapidly [1]-[2]. The advantage of VRLA is the capability to distribute a high surge current to a load. However, a single VRLA battery unit is not enough to supply power to meet the demands of the overall system. Therefore, a serially connected battery string (SCBS) is required to support a huge surge in power for many applications. SCBSs are used in electric vehicles (EVs), Internet data centers (IDCs), telephone exchanges and uninterruptible power supplies (UPSs). Charging a serially connected battery string is simple because a single power source is required to connect at the bottom-end and the top-end electrical terminals of the battery stack. Unfortunately, the VRLA batteries in the string are not completely uniform, even though they were produced on the same production line. Small differences in the chemical energy stage of the batteries may cause unequal charge in any one battery in a stack when charging and discharging, creating an unbalanced effect. This in turn results in either overcharging or undercharging and reduces the system’s reliability. The unbalance causes the stack to age prematurely and shortens its service life. Of greater concern was the safety of the system; an explosion can occur due to rapid hydrogen gas production during overcharging. To manage this imbalance effect, a cell charge equalizing system (CES) is used. This CES is an important part of a battery management system (BMS). A CES is composed of many charge equalization circuits (CECs). A CEC is responsible for sweeping the excess energy from a source battery to a target battery.

From previous research on CESs, there are several equalizing techniques available, and these are shown in Fig. 1. To control the excess energy of a fully charged battery, Refs. [3]-[6] proposed a dissipative technique using an individual cell equalizer (ICE) consisting of one resistor and one switch connected in parallel to each battery in a string.
The efficiency of this technique is extremely low because all excess energy is changed into heat through the resistor. To improve the system's efficiency, a non-dissipative technique was developed [7]-[36]. This technique takes advantage of a power electronic converter to transport excess energy from a source battery to a target battery. The operation of a non-dissipative technique can be categorized into two main topologies: centralized design and modular design. In the centralized design [7]-[9] a single-direction, multi-winding technique was introduced. An additional power source was required to supply more charging current to the SCBS also flowing synchronously into the battery. However, if a battery was fully charged, this topology could not handle an overcharge of that battery.

Ref. [10] proposed an additional switch for control of the additional charging current. This switch was placed on the conductor connecting a multi wound transformer and a battery in an SCBS. Ref. [11] introduced a centralized bidirectional charge equalization circuit to supply an additional charging current to a hungry battery and drain excess energy from a fully charged battery.

Refs. [12]-[16] proposed a switch capacitor system to equalize the energy of batteries that are closest together. This technique led to the design of a complicated switch driver circuit. If the voltages of the batteries were significantly different, the capacitor current would have a large value and would cause damage to the switch.

Ref. [17] introduced non-dissipative balanced charging using a Ćuk topology. This technique involves passing excess energy in two directions among nearest-neighbor batteries.

Ref. [18] introduced non-dissipative balanced charging using a buck-boost topology. This technique involves passing excess energy in the top-down direction. At the last battery unit at the bottom, the additional buck-boost converter transferred the energy to a common DC charging bus at a very high voltage. As a result, the switch faced a high stress voltage. Therefore, the system reliability decreased.

Ref. [19] introduced low-stress, non-dissipative balanced charging using a buck-boost topology to correct the problem noted in previous research. The equalization in this technique was again in the top-down direction, as in the previous technique. The balancing period could take several charging periods. A bidirectional converter was proposed by Refs. [17] and [20]-[21] using CECs in both directions: top-down and bottom-up. The aim of this topology was to manage the excess energy of two batteries placed closely together.

A modularized charge equalization converter was presented with the CES designed as a modular package, [9] and [22]-[30]. Refs. [31]-[33] introduced a DC-linked technique as an improvement in the efficiency of the transfer of energy between battery modules in an SCBS of the modular design.

Even though these techniques were able to increase the total transfer efficiencies of the CES, they operated in a double-stage manner: The first stage was used to carry the excess energy from the fully charged battery to the DC-linked bus. The second stage was used to carry the DC-linked energy to another battery in the string. The efficiency was moderate because the total transfer energy resulted from multiplying the two converter efficiencies. To better understand these traditional balancing processes, a three-dimensional efficiency transfer graph was analyzed [31].

Ref. [34] proposed a technique for balancing energy by using a flyback converter with multiple-wound transformers. This technique is centralized and not modular. Ref. [35] proposed a multi-flyback transformer with an inter-module equalizer. Ref. [36] proposed a multi-flyback transformer without an inter-module equalizer. Some power switching devices in these designs [34]-[36] experience a high-voltage stress on the top battery terminal (more batteries equal more voltage stress).

Both topologies (centralized and modularized) take the same amount of energy, but when the size of the system needs to be extended to accommodate more units, the centralized topology makes it difficult to insert and remove converter modules from the CES. In changing the number of batteries in the SCBS, the centralized topology also requires a redesign of hardware and related components, whereas with the modularized topology, only a small change in the microcontroller software is required. In the centralized topology, the voltage stress of the switch depends on the number of batteries in the SCBS unit. When the size of the SCBS system increased, more battery units will be used. This leads to a higher voltage stress developing across the active switches, because the centralized topology requires electrical power from the high voltage present at the main charging terminals.

The presented work describes a modular single-stage low-voltage-stress CEC with an AC-linked bus technique to increase the overall transfer efficiency among batteries in the SCBS. The modular design of the proposed scheme makes it possible for an engineer to easily fix the circuit problems during maintenance.
II. The Proposed Charge Equalization Technique

The block diagram of the proposed system is shown in Fig. 2. The key concept is how to transfer excess energy to a target battery as quickly as possible by using a property of electromagnetic coupling. Unlike the previous CEC technique, this proposed CEC consisted of modular bidirectional DC-DC converters connected through a high-frequency AC-linked bus. A current source \((I_s) \) supplied a constant current for charging the batteries of the SCBS. Each converter module is represented by \(H_n \). The bidirectional current that flowed between the batteries and the converters are called \(I_{idc} \).

![Fig. 2. Diagram of the proposed circuit.](image)

The number of CEC modules was equal to the number of batteries in the SCBS. Each converter module was connected to the associated battery units. The details of a single-stage forward converter of the CES module are shown in Fig. 3. It consisted of four switches and one transformer. The CES module had a low component count, and it was operated at low-voltage-stress switching to give the highest operational reliability. The transformer core was assembled with 0.1 mm air gap wiring. The leakage inductance of the transformer was 1.5 \(\mu \)H. The total energy from the primary side was allowed to transfer to the secondary side through the transformer. The turn ratio of each transformer was 1:1. The MOSFET \(M_{3n} \) with \(M_{4n} \) and \(M_{2n} \) with \(M_{5n} \) were alternately turned on and off.

![Fig. 3. Detailed diagram of the proposed charge equalization modules.](image)

III. Operation of the Single-Stage Synchronous Forward CES Converter

From a diagram of the CES (Fig. 2) and the details of each converter module \((H_n) \) (Fig. 3), the essential operating modes are presented in Fig. 4 and Fig. 5, respectively. An AC-linked bus operated as a shortcut path for the excess energy of a fully charged battery cell. In the charging process of a serially connected battery, the stage of charge (SOC) is proportional to the battery voltage, so the responsibility of the CES was to ensure that the voltages of each battery were equal. This responsibility was accomplished by equalizing the excess energy of one battery to make it equal to another battery. To do this, it was assumed that \(V_{B1}, V_{B2}, V_{B3} \) and \(V_{B4} \) were 7 V, 6.5 V, 6 V and 7.5 V respectively. The operation of the proposed technique can be described in five stages. The details are as follows:

First stage \((t_0-t_1) \): switches \(M_{1n} \) and \(M_{4n} \) were turned on synchronously. \(M_{2n} \) and \(M_{3n} \) were turned off. Some energies from batteries \(B_1, B_2, B_3 \) and \(B_4 \) are interchanged and some energies are stored in each transformer at a magnetizing inductance \((L_m) \) and leakage inductance \((L_{lk}) \). In this stage, the voltage drop across the switches \(M_{1n} \) and \(M_{4n} \) equaled the product of the switches’ turn-on resistance \(R_{D_{on}} \) and transformer currents \(I_{on} \). The currents from batteries \(B_4 \) and \(B_1 \) negatively increased, but the currents from batteries \(B_3 \) and \(B_2 \) positively increased. The negative current flow waveform meant excess energy flowed from the battery into the converter. The positive current flow waveform meant additional current was supplied to each battery. In this region, the current from battery \(B_1 \) was greater than from other batteries because battery \(B_5 \) (6 V) had the lowest voltage. The excess energy from batteries \(B_4 \) (7.5 V) and \(B_1 \) (7 V) was transferred to battery \(B_3 \).
Battery B_2 took less current than battery B_3 because the voltage of battery B_2 was higher than that of battery B_3.

Second stage (t_2-t_3): switches M_{1n} and M_{4n} were turned off. M_{2n} and M_{3n} were synchronously turned on. The voltage drop across the switches were equal to the battery voltage in clamping mode, which maintained a low-voltage stress for the proposed CEC. The energy from L_m and L_{lk} of each transformer decreased, being transferred back to the batteries. The current amplitude of B_4, B_3, B_2 and B_1 decreased. The amplitude of this current depended on the battery voltage. A lower voltage would produce a high current amplitude.

Third stage (t_3-t_4): switches M_{1n} and M_{4n} were kept turned off. M_{2n} and M_{3n} were still turned on, except for M_{24} and M_{34}, which were turned off. After the energy from L_m and L_{lk} of the transformer dropped to zero, the voltage drop across the switches M_{1n} and M_{4n} was again equal to the second stage. The current of battery B_4 was zero. The currents of batteries B_3 and B_2 decreased. The current of battery B_1 decreased to zero.

Fourth stage (t_4-t_1): switches M_{1n} and M_{4n} were turned off. M_{2n} and M_{3n} were still turned on, except for M_{22}, M_{32}, M_{23} and M_{31}, which were turned off. The currents of batteries B_4 and B_1 were zero. The current of battery B_2 became zero.

Fig. 4. Operation modes of the proposed technique.

Fig. 4. Operation modes of the proposed technique (cont’d).
Fig. 4. Operation modes of the proposed technique (cont’d).

Fig. 5. The key waveform of the proposed converter.

Fifth stage \((t_4-t_5)\): switches \(M_{1n}\) and \(M_{4n}\) were kept turned off. Only \(M_{23}\) and \(M_{33}\) were still turned on. The voltage drop across the switch still decreased. The currents of batteries \(B_4\), \(B_3\) and \(B_1\) were zero. The current of battery \(B_3\) decreased to zero and waited to return to the task from the first stage.

IV. DESIGN OF THE CHARGE EQUALIZATION AC-LINKED MODULE

This section presents a guide to computing the component values of the single-stage AC-linked converter. The simplified model of the charge equalization module is shown in Fig. 6. The predefined variables of the single-stage AC-linked converter are shown in Table I.

Fig. 6. Simplified model of the charge equalization module.

The configuration of this charge equalization circuit was operated in the low-stress region. Kirchhoff voltage loops show that the maximum drain-source voltage of each switch \(V_{ds}\) was:

\[
V_{ds} = V_B
\] (1)
For a maximum battery voltage of 7.5 V, the maximum \(V_{dc} \) is equal to 7.5 V.

TABLE I

PREDEFINED VARIABLES OF THE SINGLE-STAGE AC-LINKED CONVERTER

<table>
<thead>
<tr>
<th>Input variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of VRLAs in the SCBS</td>
<td>4 Units</td>
</tr>
<tr>
<td>Maximum input voltage ((V_{in_{max}}))</td>
<td>7.5 V</td>
</tr>
<tr>
<td>Minimum input voltage ((V_{in_{min}}))</td>
<td>6.0 V</td>
</tr>
<tr>
<td>Nominal input voltage ((V_{in_{norm}}))</td>
<td>7.0 V</td>
</tr>
<tr>
<td>Power output ((P_o))</td>
<td>6.0 W</td>
</tr>
<tr>
<td>Charging current ((I_s))</td>
<td>0.8 A</td>
</tr>
<tr>
<td>Switching frequency ((f_{sw}))</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Transformer coefficient ((\eta Tr))</td>
<td>0.99</td>
</tr>
<tr>
<td>MOSFET turn-on resistance ((R_{ds_{on}}))</td>
<td>0.028 Ω</td>
</tr>
</tbody>
</table>

Therefore it was possible to use a low-voltage switch in the charge equalization module. Under low-voltage operation of the main power switch, the system reliability was high. While the switch was operated the maximum drain source voltage was calculated by

\[
V_{ds_{on}} = \frac{P}{\eta Tr \times V_{in_{min}}} \times R_{ds_{on}}
\]

\[
V_{ds_{on}} = \frac{6.0}{0.99 \times 6.0} \times 0.028 \simeq 0.028 \text{ V}
\]

The transformer functioned as a magnetic coupling, implying that the transformer turn ratio (\(N_{ps} \)) could be equal to one. The primary magnetizing inductance voltage was computed.

\[
V_{in} = N_{ps} \times (V_{p_{max}} + (2 \times V_{dc}))
\]

\[
V_{in} = 1 \times (7.5 + (2 \times 0.028)) = 7.556 \text{ V}
\]

The maximum turn-on time was calculated.

\[
T_{os_{max}} = \frac{V_{in} \times T}{(V_{in_{min}} - (2 \times V_{dc})) + V_{in}}
\]

\[
T_{os_{max}} = \frac{7.556 \times 50 \times 10^{-6}}{6 - (2 \times 0.028) + 7.556} = 27.98 \mu s
\]

The minimum turn-on time was calculated.

\[
T_{os_{min}} = \frac{V_{in} \times T}{(V_{in_{min}} - (2 \times V_{dc})) + V_{in}}
\]

\[
T_{os_{min}} = \frac{7.556 \times 50 \times 10^{-6}}{(7.5 - (2 \times 0.028)) + 7.556} = 25.19 \mu s
\]

The maximum duty cycle was calculated.

\[
D_{max} = \frac{T_{os_{max}}}{T} = \frac{27.98 \times 10^{-6}}{50 \times 10^{-6}} = 0.559
\]

The minimum duty cycle was calculated.

\[
D_{min} = \frac{T_{os_{min}}}{T} = \frac{25.19 \times 10^{-6}}{50 \times 10^{-6}} = 0.503
\]

The primary current ramp amplitude was calculated.

\[
\Delta I_{ps} = \frac{2 \times P_v}{(V_{in_{min}} - (2 \times V_{dc})) \times \eta \times D_{max}}
\]

\[
\Delta I_{ps} = \frac{2 \times 6}{(6 - (2 \times 0.028)) \times 0.99 \times 0.559} = 3.648 \text{ A}
\]

\[
I_p = \frac{(V_{in_{min}} - (2 \times V_{dc})) \times T_{os_{max}}}{\Delta I_{ps}}
\]

\[
I_p = \frac{(6 - (2 \times 0.028)) \times 27.98 \times 10^{-6}}{3.648} = 45.59 \mu H
\]

Each magnetizing inductance (\(L_m \)) of the CEC’s output transformers was linked in a parallel connection. Thus, the inductance of each transformer in the CEC modules for four-unit VRLA batteries could be calculated.

\[
L_m = n_H \times L_p = 4 \times 45.59 \mu H = 182.36 \mu H
\]

Where \(n_H \) is the number of active CES modules.

From Eq. (1)–(10), the component variables of the charge equalization module were calculated, and their values are given in Table II.

TABLE II

THE COMPONENT VARIABLES OF THE CONVERTER

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET ((M_{on}, M_{off}))</td>
<td>IRFZ44N</td>
</tr>
<tr>
<td>Synchronous switch ((D_{on}, D_{off}))</td>
<td>IRFZ44N</td>
</tr>
<tr>
<td>Transformer inductance ((L_p))</td>
<td>180 \mu H</td>
</tr>
<tr>
<td>Transformer turn ratio</td>
<td>1:1</td>
</tr>
</tbody>
</table>

V. CONTROLLING PRINCIPLE

The control diagram of the proposed system is shown in Fig. 7. In this prototype, there were four battery units connected in a serial pattern. Thus, the number of CEC modules should be equal to the amount of battery units, yielding four CEC modules. The four CEC modules were \(H_1 \), \(H_2 \), \(H_3 \) and \(H_4 \).
signal to disable the charging current source. After finishing charging a battery, the MCU sent an inhibition sensor supplied the charging current information to the MCU. A synchronous-command signal to switch the synchronous-command signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous driver circuit generated the proper voltage for controlling the main control system used a 16-bit microcontroller unit (MCU) with a computation speed of 30 mega-instructions per second (MIPS). The voltage of each battery was sent to the MCU individually via an isolated signal-conditioning circuit. The battery output signals were sent to the MCU for computing and generating gate-driving signals for the CEC modules. After the MCU internally completed and generated the gate-driving signal in a pulse width modulation (PWM) style, the MCU gave a pulse width modulation (PWM) style, the MCU gave a gate-driving signals for the CEC modules. After the MCU gate-driver circuit generated the proper voltage for controlling the main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module. The synchronous signal generator was a system that measures the transformer main active switch in the CEC module.

VI. EXPERIMENTAL RESULTS

Six volt VRLA batteries were selected because the voltage of the commercial available VRLA batteries is at the medium range of 2 V to 12 V. The aim of this experiment was to verify the low-voltage-stress charge equalizing system with medium voltage VRLA batteries. However, the proposed technique can also be applied to 48 V telecommunication systems and 125 V substation systems.

To verify the validity of proposed technique, four battery units with four different stages of charge were used. Each battery was connected together in a serial configuration. A uniform power source fed the same charging current to each of these batteries. Using a CEC assured controlled and uniform voltage in the charging of each of the batteries. A 22-bit resolution PC recorded the battery voltage data. A laboratory power supply (Model GPS-4303, GWINSTEK) provided the charge to the SCBS; an oscilloscope (DS1022C, FLUKE) monitored the battery voltages; a digital multimeter (MODEL 1009, KYORITSU) measured the efficiency of the proposed system; and battery SL6-5 (SPA® VRLA battery 6 V/5 Ah) was the test subject.

The operating frequency of the CEC system was 20 kHz. The initial conditions of the four batteries at different stages of charge (SOC) were \(B_1 = 6.37 \text{ V} \), \(B_2 = 6.52 \text{ V} \), \(B_3 = 5.47 \text{ V} \) and \(B_4 = 6.31 \text{ V} \).

To manage the unbalanced individual energies in the battery string, CESs were employed. Fig. 8 shows the battery voltages while charging with the CESs.

The initial stage is depicted in the beginning region (a), and it shows that each battery started at a different voltage. The voltages of the batteries are arranged from highest to lowest: \(V_{B2}, V_{B3}, V_{B1}, \) and \(V_{B4} \). The stage of charging without CES is shown in region (b). Each battery voltage is increasing uniformly. In region (c), the proposed CES handles the equalization process to equalize the battery voltage. The voltages of the batteries are conditioned together with a voltage range of 150 mV. At the end of the charging process, each battery has approximately the same voltage (7 V).

The oscillograms of the proposed CEC are shown in Fig. 9. The initial conditions of the four batteries were \(B_1 = 5.94 \text{ V} \), \(B_2 = 6 \text{ V} \), \(B_3 = 5.61 \text{ V} \) and \(B_4 = 6.23 \text{ V} \).

![Diagram of the proposed CEC technique.](image)

Fig. 7. Diagram of the proposed CEC technique.

![The relationship of battery voltage and charging time.](image)

Fig. 8. The relationship of battery voltage and charging time.

The current of the highest-voltage battery, \(B_4 \), is shown in Fig. 9(a). The current of the battery with the lowest voltage, \(B_3 \), is shown in Fig. 9(b). The current of the batteries with a moderate voltage, \(B_2 \) and \(B_1 \), are shown in Fig. 9(c) and Fig.
9(d), respectively. The AC-linked voltage at the interconnection bus is shown in Fig. 9(e).

(a) The current of the highest voltage battery, B_h

(b) The current of the battery with the lowest voltage, B_l

(c) The current of the batteries with moderate voltage, B_m

(d) The current of the batteries with moderate voltage, B_m

(e) The AC-linked voltage at the interconnection bus

(f) The voltage stress drop across the main active switches M_{1n} and M_{2n}

(g) The voltage stress drop across the synchronous active switch

Fig. 9. Oscillograms of the proposed converter.

The voltage stress drop across the main active switches M_{1n} and M_{2n} is shown in Fig. 9(f). M_{2n} and M_{3n} were set to a synchronous switch, the voltage stress drop across the synchronous active switch is shown in Fig. 9(g). At the near end of period (T) in Fig. 9(e) and 9(f), the AC-linked voltage and the voltage drop across the active switch (V_{ds}) increased slightly because this region had no synchronous signal driving the synchronous switches (M_{3n} and M_{2n}). Both the voltage stress and the voltage spike of the primary switch were low, suggesting that a low-voltage component for this circuit could be used. In commercial terms, the use of a low-voltage component is more economical, and the reliability of a low-stress system is higher.

Considering the current and voltage oscillograms of the proposed converter, it was found that the switching devices are facing off with a high current and AC-linked voltage high voltage spikes. These spikes occurred because of the dead time interval between the first operating (t_0-t_1) and second operating stages (t_2-t_3). The dead time interval was necessary to prevent a short circuit condition between high-side and low-side switches of the converter and this could not be neglected. Upon first operating, stages M_{1n} and M_{2n} were synchronously turned on; the magnetizing flux increased. The primary transformer voltage $V_{T(n)}$ was equal to V_{Bn} as shown in Fig. 10(a).

(a) For the operation at first stage

(b) The operation during a dead time period

(c) The operation at the second stage

Fig. 10. The operation of the proposed circuit that cause switching current and voltage spikes.

After finishing the first operating stage M_{1n} and M_{2n} were synchronously turned off. Then the dead time interval started as shown in Fig. 10(b). At this interval, the magnetizing flux decreased, the primary transformer voltage had inverse polarity and was equal to:

\[-V_{T0} = ((2x V_{F_Dn}) + V_{Bn})\]

(11)

After the dead time period ended, the second stage started while the primary transformer voltage was equal to (11). Switch M_{3n} and M_{3n} were synchronously turned on. At the beginning of this second stage the current spike occurred for a short period of time because the primary transformer voltage
had a higher potential than the normal stage. Then the primary transformer voltage V_{HL} decreased (from (11)) to equal V_{BL}. The current of the inductor slowly decreased to a normal operating stage as shown in Fig. 10(c).

In this proposed circuit, the switching transformer with the ratio of $N_P: N_S$, equaled 1:1 and consisted of many parasitic elements. These elements are shown in Fig. 11. It was measured using a LCR meter (Model LCR817, GWINSTEK).

The parasitic measurement results are $R_P = 0.103 \, \text{mΩ}$, $R_S = 0.103 \, \text{mΩ}$, $L_P = 1.13 \, \mu\text{H}$, $L_S = 1.21 \, \mu\text{H}$, $L_m = 165 \, \mu\text{H}$, $C_W = 0.212 \, \text{nF}$. C_P and C_S are very small and they can be neglected.

![Fig. 11. The parasitic elements of the transformer model in the proposed CES.](image)

One cause for the current spike came from the winding capacitance C_W coupling between primary winding and secondary winding [37]. It caused a small current spike at the main active switching device as shown in Fig 12(a). On the other hand, the leakage inductance of the transformer caused a voltage spike across the main active switching device as shown in Fig 12(b).

![Fig. 12. The spikes at the switching device.](image)

These voltage and current spikes in general were generated by the behavior of the proposed circuit. To reduce the current spike, a Schottky diode was installed parallel to the internal diode of the active switching device in order to reduce V_{F_D}. It could also be reduced by using a resonant-mode converter, eliminating voltage and current spike problems of the charge equalized module. However, this is the topic of future research.

The efficiency of the average energy transferred by the proposed technique is shown in Fig. 13.

The procedure used to measure the converter-transferred energy efficiencies shown in Fig. 14(a) involved the following steps:

- Supply a constant voltage (7 V) to the first converter module.
- Connect a load resistance of 6.2 Ω at the output terminal of the fourth converter module.
- Open the terminal circuit of the second and third converter modules.
- Vary the duty cycle command for the active switch of the first converter.
- The synchronous signal generator generates a synchronous command to the synchronous switches D_1 and D_2.

As a result, the maximum efficiency of the proposed technique was 85% at a power output of 5 W (calculated from P_{in} of converter $P_{\text{in}} = V_{\text{in}}I_{\text{in}}$ and $P_{\text{out}} = V_{\text{out}}I_{\text{out}}$). If the power input came from battery B_1 and the output went to battery B_4, the efficiency was then equal to $V_{B4}I_{B4}/V_{B1}I_{B1}$.

Fig. 14(b) shows a comparison of the transfer of excess energy from battery B_4 to battery B_1. With the DC-linked charging techniques [33] to transfer excess energy from battery B_4 to battery B_1, the DC-linked technique needed to operate the converter of at least two modules at the same time. The first module converted excess energy from the battery to the DC-linked voltage bus, and the second module converted the DC-linked voltage and transferred it to the target battery. Conversely, the AC-linked technique had the ability to transfer energy from a source battery to a target battery in a single shot, which could increase the total transferred energy efficiency.

The work of Ref. [33] used a converter with an efficiency of 80%, which means the total efficiency of energy transferred was $(0.8 \times 0.8) \times 100\% = 64\%$. Compared with the proposed topology the efficiency increased by more than 21% over the DC-linked bus topology.
VII. CONCLUSION

The proposed low-voltage-stress AC-linked charge equalizing system satisfactorily improved the overall energy transfer efficiency. It was practical to implement a high-efficiency battery management system by incorporating a charge equalization circuit (CEC) and a microcontroller into the battery equalization process. This converter-controller combination eliminated the problem of unbalanced battery voltages. With a modularized design, embedded with a microcontroller, the proposed system was compatible with any number of batteries in the SCBS. However, to take full advantage of the proposed topology, the number of batteries in the SCBS should be larger than 3 units. The experimental results showed that the efficiency of using the CEC was 85% at an average power output of 5 W. The proposed technique had a modularized design that was simple to construct, install and maintain. The main disadvantage of this proposed topology was a complicated switch driving circuit. This circuit also faced a high current stress when the number of CES expanded to a larger scale SCBS. In future work, a single-stage converter with a high power output capability, one-cycle control and operating in resonant mode will be studied. The advantages of such a system could be fast control and applicability to linear and nonlinear situations.

VIII. ACKNOWLEDGEMENTS

We would like to thank the Department of Electronic and Telecommunication Engineering and Department of Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi for a partially supporting fund. We also thank Dr. Rainer Zawadzki (RMUTL) for advising on the manuscript.

REFERENCES

Charniyut Karnjanapiboon (member) was born in Nan, Thailand, in 1980. He received B.Ind degree in power electronic technology from Mongkut’s Institute of Technology North Bangkok (KMITNB), Thailand, in 2002. He received M.Eng degree in electrical engineering from Mongkut’s University of Technology Thonburi (KMITT), Bangkok, Thailand, in 2004. His main interests include power electronic, photo voltaic system and energy storage system.

Kamon Jirasereeamornkul (non-member) was born in Phuket, Thailand, in 1975. He received the B.Eng degree, the M.Eng. degree in electrical engineering and the Ph.D. degree in electrical and computer engineering from King Mongkut’s University of Technology Thonburi (KMITT), Bangkok, Thailand, in 1997, 2001 and 2006, respectively, where he is currently working as lecturer at the Department of Electronic and Telecommunication Engineering KMUTT. His research interests are high-frequency power converters, high-frequency inverter and electronic ballasts.

Veerapol Monyakul (non-member) was born in Thailand. He received a Doctoral degree in Electronic Engineering from Oklahoma State University, USA in 1993, and presently is a researcher at Biochemical Engineering and Pilot Plant Research and Development Unit (BEC), National Science and Technology Development Agency (NSTDA), Thailand. He has worked on energy technology and driving systems.