Nonisolated Bidirectional Soft Switching SEPIC/ZETA Converter with Reduced Ripple Currents

Min-Sup Song†, Young-Dong Son*, and Kwang-Hyun Lee*

†* Central R&D Institute, Samsung Electro-Mechanics, Suwon, Korea

Abstract

A novel nonisolated bidirectional soft switching SEPIC/ZETA converter having reduced ripple currents has been proposed and characterized in the present paper. Based on the original bidirectional SEPIC/ZETA components, auxiliary two switches and an inductor are added to form a new direct power delivery path between input and output. Proposed converter can be operated in forward SEPIC and reverse ZETA modes with reduced ripple currents and higher voltage gains owing to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching (ZCS) turn-on and/or turn-off by soft current commutation among them. Therefore, switching and conduction losses of the proposed converter have also been considerably reduced compared to the conventional bidirectional SEPIC/ZETA converter. Operation principles and characteristics of the proposed converter are analyzed in detail, and verified with some simulation and experimental results.

Key words: Bidirectional SEPIC/ZETA converter, ripple current, soft current commutation, soft switching

I. INTRODUCTION

Bidirectional dc-dc converter can manipulate bilateral power flow between two dc sources only using a single circuit structure. Therefore, the weight, volume, and cost of the overall system can be reduced with simplified circuit composition [1]. Owing to such good features, bidirectional dc-dc converters have been increasingly used in battery charger/discharger, fuel cell hybrid power system, dc uninterruptible power supply, and energy regenerative system in automotive applications [2]–[9].

When galvanic isolation is not needed, nonisolated converters are preferred due to their simplicity and higher efficiency than isolated converters. Several nonisolated bidirectional dc-dc converters have been reported in literatures; bidirectional boost/buck-derived converters [10]–[13], Cuk [14], SEPIC/ZETA [15], multilevel converter [16], [17], and coupled inductor type converters [18], [19]. Among them, multiphase interleaved converters are often adopted to reduce the voltage ripple and filter size by reducing ripple components of the inductor current [20]–[22]. They can enhance the performance of the circuit; however, the complexity of overall circuit system can be increased. Control reliability might be also deteriorated with increased interleaving phases.

Without any interleaved techniques, unidirectional SEPIC and ZETA converters featuring reduced ripple currents have been proposed in [23], [24]. As shown in Fig. 1, they consist of the original SEPIC or ZETA components plus auxiliary diode and switch to form a new direct power delivery path between input and output. By shortening duration time for original SEPIC or ZETA operation and expanding duration time for direct power link operation, inductor ripple currents and switching voltages of main switch and diode can be reduced. However, they still have hard switching properties. Especially, diodes suffer from severe reverse recovery problem.

In order to overcome these hard switching problems, a new nonisolated bidirectional soft switching SEPIC/ZETA converter with reduced ripple currents is proposed in this paper. Based on the modified SEPIC topology in Fig. 1 (a), just a small inductor is added on the auxiliary power delivery path and diodes are replaced by active switches for bidirectional power flow control. Using a single circuit structure, SEPIC and ZETA operations are implemented in forward and reverse directions, respectively. Both step-up and step-down operations are available regardless of power conversion directions like the original bidirectional SEPIC/ZETA converter. Owing to the duality between SEPIC and ZETA converters, almost same
II. OPERATION ANALYSIS OF THE PROPOSED CONVERTER

A. Circuit Structure

The proposed converter can be divided into two parts as shown in Fig. 2. The first part is the original nonisolated bidirectional SEPIC/ZETA converter consisting of inductors \(L_1 \) and \(L_2 \); capacitors \(C_{in}, C_s, \) and \(C_o \); switches \(S_1 \) and \(S_2 \). The second part is an additional circuit consisting of switches \(S_3 \) and \(S_4 \), and an inductor \(L_a \). The additional circuit provides a new direct power delivery path between input and output. SEPIC and ZETA operations are implemented in forward and reverse directions, respectively.

In SEPIC operation, \(S_1 \) acts for main switch; \(S_2 \) for synchronous rectifier; \(S_3 \) and \(S_4 \) for auxiliary switches. In ZETA operation, \(S_1 \) conducts for synchronous rectifier; \(S_2 \) for main switch; \(S_3 \) and \(S_4 \) for auxiliary switches. \(L_a \) induces the soft current transition between switches.

B. Mode Analysis

In the proposed converter, \(L_a \) is much smaller than \(L_1 \) and \(L_2 \). Therefore, following basic operation analysis ignores the effect of \(L_a \) and treats the proposed converter as conventional hard switching converter to simplify the analysis. During each switching cycle, the proposed converter has three distinct operation modes in SEPIC and ZETA operations, respectively. Operation waveforms for forward SEPIC mode are shown in Fig. 3.

Mode 1 \([t_0-t_1]\): From \(t_0 \) to \(t_1 \), only \(S_1 \) conducts while the other switches idle. Average inductor voltage is zero at steady state, so the voltage of \(C_s \) equals to input voltage \(V_{in} \) [26]. Voltages across \(L_1 (v_{i1}) \) and \(L_2 (v_{i2}) \) are both equal to \(V_{in} \). Currents through \(L_1 (i_{i1}) \) and \(L_2 (i_{i2}) \) increase with slopes of \(V_{in}/L_1 \) and \(V_{in}/L_2 \), respectively. The current flowing through \(S_1 \) \((i_{s1})\) is sum of \(i_{i1} \) and \(i_{i2} \). The drain-source voltages of \(S_1 \) \((v_{s1})\) and \(S_2 \) \((v_{s2})\) are 0V and \(V_{in}+V_o \), respectively, where \(V_o \) is output voltage. At the beginning of this mode, capacitor charging current flows from \(V_i \) terminal to \(S_1 \) through output capacitor of \(S_1 \) and the body diode of \(S_1 \). Therefore, the drain-source voltages of \(S_1 \) \((v_{s1})\) and \(S_4 \) \((v_{s4})\) become \(V_o \) and 0V, respectively. In fact, \(S_1 \) should be turned off after \(t_0 \) to satisfy the continuity of inductor currents.

Mode 2 \([t_1-t_2]\): From \(t_1 \) to \(t_2 \), only \(S_2 \) conducts, and the other switches idle. The source voltage of \(S_2 \) is \(V_o \), so \(v_{i1} \) and \(v_{i2} \) are both \(-V_o\). \(i_{i1} \) and \(i_{i2} \) decrease with slopes of \(-V_o/L_1\) and \(-V_o/L_2\), respectively. The current through \(S_2 \) \((i_{s2})\) is sum of \(i_{i1} \) and \(i_{i2} \). At the beginning of this mode, voltage difference between drain voltage of \(S_1 (V_{in}+V_o) \) and \(V_o \) terminal induces capacitor charging current flowing through auxiliary current path. Assuming the same output capacitances of \(S_1 \) and \(S_4 \), that voltage difference equally charges output capacitor of \(S_1 \) and \(S_4 \) by \(V_o/2 \), respectively. Simultaneously, \(v_{s3} \) and \(v_{s4} \) in step-up operation becomes \((-V_{in}+V_o)/2\) and \((V_{in}+V_o)/2\), respectively. In step-down operation, they are
Nonisolated Bidirectional Soft Switching SEPIC/ZETA Converter with Reduced Ripple Currents

Fig. 3. SEPIC operation waveforms of the proposed converter in (a) step-up and (b) step-down.

0V and V_{in}, respectively. S_2 can be turned on after t_1 and turned off before t_2, so synchronous rectification and ZVS can be achieved.

Mode 3 $[t_{2} - t_{0}']$: Between t_2 and t_0', S_3 and S_4 conduct, and S_1 and S_2 do not conduct. This mode is added to conventional SEPIC/ZETA converter to provide additional power deliver path between input and output, thus enhancing the performance of the proposed converter. As v_{S1} is V_o, v_{S2} becomes V_{in}. Therefore, both v_{L1} and v_{L2} are $(V_{in} - V_o)/L_1$ and $(V_{in} - V_o)/L_2$, respectively. Those slope change values of inductors are much smaller than those of previous modes. Consequently, ripple currents of inductors can be considerably reduced. The current through S_3 and $S_4 (i_{La})$ is sum of i_{L1} and i_{L2}. Therefore, i_{L1} and i_{L2} have positive slopes during step-up operation, while positive slopes during step-down operation. S_1 should be turned off before t_0' to prevent the reverse short current from V_o terminal to ground through auxiliary current path and S_1.

Reverse ZETA operation waveforms are shown in Fig. 4.

Fig. 4. ZETA operation waveforms of the proposed converter in (a) step-up and (b) step-down.

Negative polarity of i_{L1} and i_{L2} means for reverse power flow in ZETA operation. The principle of ZETA operation of the proposed converter is almost similar to that of SEPIC operation due to duality between SEPIC and ZETA converters. Therefore, the specific analysis for ZETA operation is skipped in this paper.

C. Conversion Ratio

Using the voltage-time balance principle, and assuming the 100% power conversion efficiency, the voltage and current conversion ratios of the proposed converter can be determined by:

$$M = \frac{V_o}{V_{in}} = \frac{I_{in}}{I_o} = \frac{T - t_{S2}}{T - t_{S1}} = 1 - d_2 \frac{1 - d_2}{1 - d_1}$$

(1)

Here, I_{in} and I_o refer to input and output currents, respectively. t_{S1} and t_{S2} correspond to the duration times of S_1 and S_2, respectively. Switching duty ratios d_1 and d_2 are given by $d_1 = t_{S1}/T$ and $d_2 = t_{S2}/T$, where T is repeated switching period. d_1 must be larger than d_2 to step up output voltage and vice versa.
As d_1 and d_2 become smaller, the power conversion efficiency of the proposed converter increases because the low ripple current effect of Mode 3 can be maximized with considerably reduced overall circulation currents. As a result, conduction and switching losses of switches and dc resistive losses of inductors and capacitors can be reduced.

III. DESIGN PARAMETERS

Some useful design parameters are presented in this section. Here, L_a is ignored to simplify the design. To maximize the ripple reduction effect of the proposed converter, d_1 and d_2 should be minimized and d_3 needs to be maximized. Here, d_3 (=1−d_1−d_2) denotes duty ratio of S_3 and S_4. In SEPIC operation, therefore, duty ratios can be determined as:

\[
\begin{align*}
\text{step-up: } & \quad d_1 = 1 - (1 - d_2)/M \ (d_2: \text{minimum}) \\
\text{step-down: } & \quad d_2 = 1 - (1 - d_1)/M \ (d_1: \text{minimum})
\end{align*}
\]

(2)

In ZETA operation, likewise, duty ratios are determined by:

\[
\begin{align*}
\text{step-up: } & \quad d_1 = 1 - (1 - d_1)/M \ (d_1: \text{minimum}) \\
\text{step-down: } & \quad d_2 = 1 - (1 - d_2)/M \ (d_2: \text{minimum})
\end{align*}
\]

(3)

where M is voltage conversion ratio defined in (1).

For the proposed converter, inductor ripple current becomes maximum value between $V_{in} d_1 T/L$ and $V_{in} d_2 T/L$, where L is L_1 or L_2. This formula can be also applied to conventional SEPIC converter; however, ripple value in the proposed converter is much smaller than conventional SEPIC converter owing to the reduction of d_1 and d_2. Inflection points of inductor currents such as $i_{L1}(t_0)$, $i_{L1}(t_1)$, $i_{L1}(t_2)$, $i_{L2}(t_1)$, $i_{L2}(t_2)$, and $i_{L2}(t_2)$ (Fig. 3) are defined as I_1, I_2, I_3, I_4, I_5, and I_6, respectively. They are related to each other as follows:

\[
\begin{align*}
I_1 &= i_{L1}(t_0) \\
I_2 &= i_{L1}(t_1) = I_1 + \frac{V_{in} d_1 T}{L_1} \\
I_3 &= i_{L1}(t_2) = I_1 + \frac{V_{in} d_1 T - V_o d_2 T}{L_1} \\
I_4 &= i_{L2}(t_0) \\
I_5 &= i_{L2}(t_1) = I_4 + \frac{V_o d_1 T}{L_2} \\
I_6 &= i_{L2}(t_2) = I_4 + \frac{V_o d_1 T - V_o d_2 T}{L_2}
\end{align*}
\]

(4)

Average of i_{L1} equals to I_0 as:

\[
I_{in} = i_{L1,avg} = \frac{1}{2} \left((I_1 + I_2) \cdot d_1 + (I_2 + I_3) \cdot d_2 + (I_3 + I_4) \cdot d_3 \right)
\]

(5)

Substituting (4) into (6) and using (1), I_1 is obtained by:

\[
I_1 = I_{in} - (d_1 - d_2 d_3) \cdot \frac{V_{in} T}{4 L_1}
\]

(6)

Charge balance of C_s states as follows:

\[
-(I_4 + I_5) \cdot d_1 + (I_2 + I_3) \cdot d_2 - (I_6 + I_4) \cdot d_3 = 0
\]

(7)

Substituting (4) and (5) into (8), and using (1) and (7), I_4 is obtained by:

\[
I_4 = \frac{d_2}{1 - d_2} I_{in} + \frac{d_1 d_2 d_3}{1 - d_1} \frac{V_{in} T}{2 L_1} - \frac{d_1 d_2 d_3 - d_3 d_4}{1 - d_1} \frac{V_{in} T}{2 L_2}
\]

(9)

All other inflection values in (4) and (5) can be exactly determined using (7) and (9). For the ZETA operation, the same method as above can be also applied to derive inflection points of inductor currents. Knowing these values, other design parameters such as inductor average currents, switch peak and root-mean-square (rms) currents, capacitor ripple voltages and rms currents can be obtained by simple algebra. Typical capacitor currents of the proposed converter in step-up mode are shown in Fig. 5. Here, i_{Cin}, i_{Co}, and i_{Cs} are currents of C_{in}, C_o, and C_s, respectively. For the capacitor ripple voltage calculation, capacitor charge can be achieved from local maximum area enclosed by capacitor current and time axis, and then it is divided into its capacitance such as C_{in}, C_o, or C_s.

According to the operating conditions, capacitor ripple voltages can have several different values. Several major design parameters of the proposed converter are summarized in Table I. The detailed derivations are skipped to save the space of this paper.

IV. ACTUAL CONVERSION RATIO AND EFFICIENCY CONSIDERING RESISTIVE LOSSES

An equivalent circuit for the proposed converter containing resistive elements of inductors and switches is shown in Fig. 6. r_{L1} and r_{L2} represent the equivalent series resistance of L_1 and L_2, respectively. r_{S1}, r_{S2}, r_{S3}, and r_{S4} mean the on-state drain-source resistance of S_1, S_2, S_3, and S_4, respectively. Including these resistive loss elements, conversion ratio and efficiency can be determined using the methodology in [27].
TABLE I
Several design parameters of the proposed converter.

<table>
<thead>
<tr>
<th>Conversion ratio</th>
<th>SEPIC mode</th>
<th>ZETA mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = \frac{V_o}{V_{in}} = 1 - \frac{d_2}{d_1})</td>
<td>(\frac{V_o}{V_{in}} = 1 - \frac{d_2}{d_1})</td>
<td>(\frac{V_o}{V_{in}} = 1 - \frac{d_2}{d_1})</td>
</tr>
<tr>
<td>Duty ratio selection</td>
<td>(d_2 = 1 - (1 - d_2)/M) (where, (d_2) is minimum)</td>
<td>(d_2 = 1 - (1 - d_2)/M) (where, (d_2) is minimum)</td>
</tr>
<tr>
<td>(d_2 = 1 - (1 - d_2)/M) (where, (d_2) is minimum)</td>
<td>(d_2 = 1 - (1 - d_2)/M) (where, (d_2) is minimum)</td>
<td></td>
</tr>
<tr>
<td>Inductor ripple current</td>
<td>(A_i = \max \left(\frac{V_o d_2 T}{I_i} , \frac{V_o d_1 T}{I_i} \right))</td>
<td>(A_i = \max \left(\frac{V_o d_2 T}{I_i} , \frac{V_o d_1 T}{I_i} \right))</td>
</tr>
<tr>
<td>Induction points of inductor currents</td>
<td>(I_i - I_o(t_1) = \frac{V_o}{2L_i})</td>
<td>(I_i - I_o(t_1) = \frac{V_o}{2L_i})</td>
</tr>
<tr>
<td>(I_i - I_o(t_2) = \frac{V_o}{2L_i})</td>
<td>(I_i - I_o(t_2) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>(I_i - I_o(t_3) = \frac{V_o}{2L_i})</td>
<td>(I_i - I_o(t_3) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>(I_i = I_o(t_4) = \frac{V_o}{2L_i})</td>
<td>(I_i = I_o(t_4) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>(I_i = I_o(t_5) = \frac{V_o}{2L_i})</td>
<td>(I_i = I_o(t_5) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>(I_i = I_o(t_6) = \frac{V_o}{2L_i})</td>
<td>(I_i = I_o(t_6) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>(I_i = I_o(t_7) = \frac{V_o}{2L_i})</td>
<td>(I_i = I_o(t_7) = \frac{V_o}{2L_i})</td>
<td></td>
</tr>
<tr>
<td>Inductor average currents</td>
<td>(\frac{d_1}{2} \left(I_i + I_o(t_3) \right) + \frac{d_2}{2} \left(I_i + I_o(t_4) \right))</td>
<td>(\frac{d_1}{2} \left(I_i + I_o(t_3) \right) + \frac{d_2}{2} \left(I_i + I_o(t_4) \right))</td>
</tr>
<tr>
<td>Switch peak currents</td>
<td>(I_{p1,sep} = I_{p1,zet} = I_1 + I_2)</td>
<td>(I_{p1,sep} = I_{p1,zet} = I_1 + I_2)</td>
</tr>
<tr>
<td>Switch peak voltages</td>
<td>(V_{p1,sep} = V_{p1,zet} = V_o)</td>
<td>(V_{p1,sep} = V_{p1,zet} = V_o)</td>
</tr>
<tr>
<td>(\frac{d_1}{3} \left(I_i + I_o(t_3) \right)^2 + \frac{d_2}{3} \left(I_i + I_o(t_4) \right)^2)</td>
<td>(\frac{d_1}{3} \left(I_i + I_o(t_3) \right)^2 + \frac{d_2}{3} \left(I_i + I_o(t_4) \right)^2)</td>
<td></td>
</tr>
<tr>
<td>Switch rms currents</td>
<td>(I_{r1,sep} = \frac{d_1}{2} \left(I_i + I_o(t_3) \right)^2 + \frac{d_2}{2} \left(I_i + I_o(t_4) \right)^2)</td>
<td>(I_{r1,sep} = \frac{d_1}{2} \left(I_i + I_o(t_3) \right)^2 + \frac{d_2}{2} \left(I_i + I_o(t_4) \right)^2)</td>
</tr>
<tr>
<td>Capacitor ripple voltages</td>
<td>(\Delta V_c = \frac{1}{C_i} \left(\frac{V_o d_2 T}{d_1 I_i} \right)^2)</td>
<td>(\Delta V_c = \frac{1}{C_i} \left(\frac{V_o d_2 T}{d_1 I_i} \right)^2)</td>
</tr>
<tr>
<td>Capacitor rms currents</td>
<td>(I_{c1,sep} = \frac{1}{d_1} \left(\frac{V_o d_2 T}{d_1 I_i} \right)^2)</td>
<td>(I_{c1,sep} = \frac{1}{d_1} \left(\frac{V_o d_2 T}{d_1 I_i} \right)^2)</td>
</tr>
</tbody>
</table>

\(I_{p1,sep} = I_{p1,zet} = I_1 + I_2 \) (approximation) \(< i_2 > i_1 \) and \(\frac{d_2}{2} \left(I_i + I_o(t_4) \right) \) (real) \(< i_2 > i_1 \)

\(I_{r1,sep} = \frac{d_1}{2} \left(I_i + I_o(t_3) \right)^2 + \frac{d_2}{2} \left(I_i + I_o(t_4) \right)^2 \) \(< i_2 > i_1 \)

\(I_{c1,sep} = \frac{1}{d_1} \left(\frac{V_o d_2 T}{d_1 I_i} \right)^2 \) \(< i_2 > i_1 \)
Conversion ratio and efficiency for forward SEPIC operation of the proposed converter can be derived as follows. Because average inductor voltage is zero, the average voltage of C_s (V_{Cs}) is obtained by:
\[V_{Cs} = V_{in} - I_{L1} \cdot r_{L1} + I_{L2} \cdot r_{L2} \] (10)
Here, I_{L1} and I_{L2} are average values of i_{L1} and i_{L2} over one switching period, respectively, at steady state. When S_1 is turned on and the others are turned off, average values of v_{L1}, v_{L2}, i_{Co}, and i_{Cs} are given by:
\[V_{L1}^{d1} = V_{L2}^{d1} = -V_o - I_{L2} \cdot r_{L2} - (I_{L1} + I_{L2}) \cdot r_{S1} \] (11)
\[I_{Co}^{d1} = \frac{V_o}{R} \] (12)
\[I_{Cs}^{d1} = -I_{L2} \] (13)
Here, R denotes load resistance. When S_2 is turned on and the others are turned off, average values of v_{L1}, v_{L2}, i_{Co}, and i_{Cs} are obtained as:
\[V_{L1}^{d2} = V_{L2}^{d2} = V_{in} - I_{L1} \cdot r_{L1} - (I_{L1} + I_{L2}) \cdot r_{S2} \] (14)
\[I_{Co}^{d2} = I_{L1} + I_{L2} - \frac{V_o}{R} \] (15)
\[I_{Cs}^{d2} = I_{L1} \] (16)
When S_3 and S_4 are turned on and the others are idle, average values of v_{L1}, v_{L2}, i_{Co}, and i_{Cs} are given as:
\[V_{L1}^{d3} = V_{L2}^{d3} = -V_o - I_{L2} \cdot r_{L2} - (I_{L1} + I_{L2}) \cdot r_{S3} \] (17)
\[I_{Co}^{d3} = I_{L1} + I_{L2} - \frac{V_o}{R} \] (18)
\[I_{Cs}^{d3} = -I_{L2} \] (19)
By applying ampere-time balance on C_o and C_s, following equations are obtained as:
\[I_{Co}^{d1} \cdot d_1 + I_{Co}^{d2} \cdot d_2 + I_{Co}^{d3} \cdot d_3 = 0 \] (20)
\[I_{Cs}^{d1} \cdot d_1 + I_{Cs}^{d2} \cdot d_2 + I_{Cs}^{d3} \cdot d_3 = 0 \] (21)
Substituting (12), (15), and (18) into (20), $I_{L1} + I_{L2}$ is given by:
\[I_{L1} + I_{L2} = \frac{V_o}{R} \cdot \frac{1}{1-d_1} \] (22)
Substituting (13), (16), and (19) into (21), I_{L2} is related with I_{L1} as follows:
\[I_{L2} = I_{L1} \cdot \frac{d_2}{1-d_2} \] (23)
Substituting (23) into (22), I_{L1} and I_{L2} are obtained as:
\[I_{L1} = I_{in} = \frac{V_o}{R} \cdot \frac{1-d_2}{1-d_1} \] (24)
\[I_{L2} = \frac{V_o}{R} \cdot \frac{d_2}{1-d_1} \] (25)

By using the voltage-time balance principle on L_1,
\[V_{L1}^{d1} \cdot d_1 + V_{L1}^{d2} \cdot d_2 + V_{L1}^{d3} \cdot d_3 = 0 \] (26)
By substituting (11), (14), (17), (24), and (25) into (26), actual voltage gain for ZETA operation is achieved by:
\[\frac{V_o}{V_{in}} = \frac{1-d_2}{1-d_1} \]
\[\frac{R(1-d_2)^2}{R(1-d_1)^2 + r_{L1}(1-d_1)^2 + r_{L2}d_2^2 + r_{S4}d_1 + r_{S2}d_2 + (r_{S3} + r_{S4})} \cdot d_3 \] (27)
Efficiency is obtained by:
\[\eta = \frac{P_o}{P_{in}} = \frac{V_o^2}{V_{in}I_{in}} = \frac{R(1-d_1)^2}{R(1-d_1)^2 + r_{L1}(1-d_1)^2 + r_{L2}d_2^2 + r_{S4}d_1 + r_{S2}d_2 + (r_{S3} + r_{S4})} \cdot d_3 \] (28)

Conversion ratio and efficiency for reverse ZETA operation of the proposed converter can be also derived using the similar procedure as above. Here, the results are summarized. Actual voltage gain for ZETA operation is
\[\frac{V_o}{V_{in}} = \frac{1-d_1}{1-d_2} \]
\[\frac{R(1-d_2)^2}{R(1-d_2)^2 + r_{L1}(1-d_2)^2 + r_{L2}d_2^2 + r_{S4}d_1 + r_{S2}d_2 + (r_{S3} + r_{S4})} \cdot d_3 \] (29)
Efficiency is given as:
\[\eta = \frac{R(1-d_2)^2}{R(1-d_2)^2 + r_{L1}(1-d_2)^2 + r_{L2}d_2^2 + r_{S4}d_1 + r_{S2}d_2 + (r_{S3} + r_{S4})} \cdot d_3 \] (30)

For the conventional bidirectional SEPI/CZETA converter, actual conversion ratio and efficiency can be simply obtained by removing auxiliary current paths, thus now $d_3 = 0$ and $d_2 = 1-d_1$. For a forward SEPIC operation of the conventional SEPI/CZETA converter, actual voltage conversion ratio is obtained as:
\[\frac{V_o}{V_{in}} = \frac{d_1}{1-d_1} \]
\[\frac{R(1-d_1)^2}{R(1-d_1)^2 + r_{L2}d_1^2 + r_{L2}(1-d_1)^2 + r_{S1}d_1 + r_{S2}(1-d_1)} \] (31)
Efficiency is given by:
\[\eta = \frac{R(1-d_1)^2}{R(1-d_1)^2 + r_{L2}d_1^2 + r_{L2}(1-d_1)^2 + r_{S1}d_1 + r_{S2}(1-d_1)} \] (32)
For a reverse ZETA operation of the conventional SEPIC/ZETA converter, actual voltage conversion ratio is obtained as:

\[
\frac{V_{in}}{V_o} = \frac{d_2}{1 - d_2}
\]

\[
\frac{R(1-d_2)^2}{R(1-d_2)^2 + r_{L1}(1-d_2)^2 + r_{L2}d_2^2 + r_{S1}(1-d_2) + r_{S2}d_2}
\] (33)

Efficiency is derived by:

\[
\eta = \frac{R(1-d_2)^2}{R(1-d_2)^2 + r_{L1}(1-d_2)^2 + r_{L2}d_2^2 + r_{S1}(1-d_2) + r_{S2}d_2}
\] (34)

In order to compare the actual voltage gains between the proposed converter and conventional bidirectional SEPIC/ZETA converter, following values of resistances are assumed and substituted into (27), (29), (31), and (33).

\[r_{L1}=r_{L2}=10\,\text{m}\Omega, \ r_{S1}=r_{S2}=r_{S3}=r_{S4}=5\,\text{m}\Omega, \ R=0.9\,\Omega.\]

Calculated actual voltage gains for the proposed converter and conventional SEPIC/ZETA converter in step-up and step-down modes are shown in Figs. 7 (a) and 7 (b), respectively. In the proposed converter, duty ratio of synchronous rectifier \(d_2\) for SEPIC and \(d_1\) for ZETA operations) is selected as small as 0.1 for the step-up mode. For the step-down mode, duty ratio of main switch \(d_1\) for SEPIC operation and \(d_2\) for ZETA operation) is chosen sufficiently small by 0.1. Those values are not dependent to the other duty ratios, which is not the case for the conventional SEPIC/ZETA converter. Owing to this design freedom, voltage gains of the proposed converter in both the step-up and step-down modes can be higher than those of conventional SEPIC/ZETA converter at the same duty ratio. Moreover, duty ratios \(d_1\) and \(d_2\) can be widely ranged in the proposed converter than conventional one.

Efficiencies for the proposed and conventional bidirectional SEPIC/ZETA converters are calculated assuming following parameters:

Step-up: \(r_{L1}=r_{L2}=10\,\text{m}\Omega, \ r_{S1}=r_{S2}=r_{S3}=r_{S4}=5\,\text{m}\Omega, \) voltage conversion from 14V to 17.3V

Step-down: \(r_{L1}=r_{L2}=10\,\text{m}\Omega, \ r_{S1}=r_{S2}=r_{S3}=r_{S4}=5\,\text{m}\Omega, \) voltage conversion from 21V to 17.3V

Substituting these parameters into (28), (30), (32), and (34), the calculated efficiencies are plotted in Fig. 8. Results show that the proposed converter has higher efficiency than conventional SEPIC/ZETA converter, especially in a higher power range, due to its possibility for optimized selection of duty ratios with respect to the conversion ratio.

V. **SOFT SWITCHING**

So far, we have treated the proposed converter as hard switched one for simple analysis. However, it indeed has soft switching features owing to the small inductor \(L_a\) on auxiliary current path. The soft current commutation aspect of the proposed converter in SEPIC operation mode is shown in Fig. 9. As mentioned in the analysis of Section II, \(S_1\) is turned off Fig. 7. Calculated voltage gains of the proposed converter and conventional bidirectional SEPIC/ZETA converter in (a) step-up and (b) step-down modes.

Fig. 8. Calculated efficiencies of the proposed converter and conventional bidirectional SEPIC/ZETA converter in (a) step-up and (b) step-down modes.
Fig. 9. Soft current commutation of the proposed converter in SEPIC operation.

after t_0 at the beginning of Mode 1. During this overlapped on-time between S_1 and S_2, the sum of i_{L1} and i_{L2} equals to the sum of i_L and i_{L1}. The voltage of L_a becomes $-V_o$ and $i_{L1}+i_{L2}$ can be assumed constant during this short time interval, thus

$$\frac{di_{S1}}{dt} = \frac{di_{La}}{dt} = \frac{V_o}{L_a}$$

(35)

Therefore S_3 and S_4 are turned off with current slope of $-V_o/L_a$, and S_1 is turned on with current slope of V_o/L_a. This soft current commutation takes time of $La(ILa(t_0)/V_o)$, thus S_4 should be turned off after this time interval for soft switching. This commutation time should be shorter than duration time of main switch for obtaining ZCS, thus

$$\frac{La(La(t_0))}{V_o} < dl$$

(36)

Similar phenomenon occurs at the beginning of Mode 3. After turning on of S_3 and S_4, sum of inductor currents $i_{L1}+i_{L2}$ is distributed to the S_2 and auxiliary current path through S_3 and S_4. During this commutation time, $i_{L1}+i_{L2}$ can be assumed constant and the voltage of L_a becomes V_{in}, therefore

$$\frac{di_{S2}}{dt} = \frac{di_{La}}{dt} = \frac{V_{in}}{L_a}$$

(37)

S_2 is turned off with current slope of $-V_{in}/L_a$, thus diode reverse recovery problem is alleviated. S_3 and S_4 are turned on with current slope of V_{in}/L_a. This commutation process takes time of $La(La(t_2)/V_{in})$. S_2 should be turned off before t_2 for soft switching. For realizing ZCS, this commutation time should be shorter than duration time of auxiliary switches, thus

$$\frac{La(La(t_2))}{V_{in}} < dl$$

(38)

In summary, small inductor L_a on auxiliary current path induces soft current commutation between switches, thus realizing ZCS of all switches. Similar development as above can be made for ZETA operation mode in the proposed converter. Besides this ZCS effect, ZVS turn-on and turn-off are also achieved at synchronous rectifiers, which are S_2 in SEPIC and S_1 in ZETA modes, respectively.

VI. SIMULATIONS AND EXPERIMENTS

To verify the operation of the proposed converter, a forward SEPIC operation of step-down case (from 21V to 17.3V) and a reverse ZETA operation of step-up case (from 14V to 17.3V) are simulated. Electric specifications are as follows: Output power $P_o=320W$ and switching frequency $f_s=100kHz$. In order to get the ripples of i_{L1} and i_{L2} to be 10% and 50%, respectively, inductors are selected by $L_1=L_2=30\mu H$. For the ripple voltages of C_{in} (Δv_{in}), C_o (Δv_o), and C_s (Δv_{Cs}) to be 1%, 1%, and 2%, respectively, capacitors are chosen by $C_{in}=33\mu F$, $C_o=235\mu F$, and $C_s=440\mu F$. Considering actual switching duty ratios, those inductors and capacitors are determined by formulas in Table I. For the soft current commutation time of 200ns, L_a is chosen to be 220nH. S_1-S_4 is IPP110N20N3 (200V, 88A, 10.7mΩ). In the simulation, a damping resistor of 50Ω is added in parallel with L_a to attenuate parasitic oscillations occurring from L_a and output capacitances of the switches. Simulation results are shown in Fig. 10. As expected, soft current commutation between switches has been noticed. ZCS turn-on and/or turn-off of switches can be also observed. With proper gating control ZVS turn-on and turn-off, and synchronous

Fig. 10. Simulation results of the proposed converter in (a) SEPIC step-down and (b) ZETA step-up operations.
rectifications are achieved in S_2 and S_1 for SEPIC and ZETA operations, respectively. Most importantly, inductor current ripples are highly reduced owing to a considerably reduced conduction times for main switch and synchronous rectifier, thereby reducing the dc resistive losses of inductors and capacitors, and conduction and switching losses of switches. A prototype circuit of the proposed converter (Fig. 11) has been built to verify the performance of the proposed converter. Electric specifications and circuit component values are the same with simulation. For the fair comparison between proposed converter and conventional bidirectional SEPIC/ZETA converter, some experimental waveforms such as inductor currents (i_{L1}, i_{L2}), switch currents (i_{S1}, i_{S2}, i_{La}), and switch voltages (v_{S1}, v_{S2}, v_{S3}, v_{S4}) are measured under the same electric specifications and circuit parameters. Those waveforms are shown in Figs. 12 and 13 for SEPIC step-down operation (from 21V to 17.3V) and shown in Figs. 14 and 15 for ZETA step-up operation (from 14V to 17.3V). Negative current polarity in ZETA operation means the reverse power flow. In SEPIC operation, inductor ripple current of proposed converter (2.19A) is reduced by 47% compared to that of conventional converter (4.14A). In ZETA operation, inductor ripple current is reduced by 32% from conventional SEPIC/ZETA (3.33A) to proposed converter (2.25A). For the proposed converter, soft current commutations between switches are confirmed and all switches achieved good ZCS property. On the other hand, the conventional SEPIC/ZETA converter showed hard switching behavior. Based on the measured switching voltages and currents, switching and conduction losses of switches have been calculated referring to [26]. Written here again, switching loss P_{sw} is given as:

$$P_{sw} = (W_{on} + W_{off}) \cdot f_s$$

(39)

where W_{on} and W_{off} are energy lost during switching turn-on and turn-off transients, respectively. They are given by:

$$W_{on} = \frac{1}{2} V_p I_p t_{on}, \quad W_{off} = \frac{1}{2} V_p I_p t_{off}$$

(40)

where V_p and I_p are switching peak voltage and current during switching transients, respectively. t_{on} and t_{off} mean for time length of switching turn-on and turn-off transients, respectively. Conduction loss P_{cond} is given by:

$$P_{cond} = I_{s,rms}^2 \cdot r_s$$

(41)

where $I_{s,rms}$ is rms current of switch in Table I and r_s is on state drain-source resistance. Assuming t_{on} and t_{off} are both 50ns, switch losses of proposed and conventional converters...
obtained in Table II. As a result, overall conduction and switching losses of the proposed converter are lower than those of the conventional SEPIC/ZETA converter by 41%.

In voltage measurements of both proposed and conventional SEPIC/ZETA converters, large voltage spikes are observed at switching turn-off transient. They are caused by unclamped parasitic inductances of hardwired connectors in series with switches in prototype circuit which was built in breadboard. To eliminate these voltage spikes, power stack needs to be redesigned for reducing series inductance or some snubber circuit such as RC voltage snubber in [28] is required to suppress them. Focusing on the performance comparison between proposed and conventional converters, however, they are not considered in these experiments. Nonetheless when properly designed RC voltage snubber is applied to the circuit, voltage spike during turn-off transient would be effectively reduced with efficiency drop under 1%. For measurement of switch currents i_{S1} and i_{S2}, $i_{S1} + i_{S2}$ is used instead of individual i_{S1} and i_{S2}. For placing current probe, an artificial wire should be inserted in series with switch. Its small inductance induces unwanted parasitic oscillation with parasitic capacitances of circuit components and also results in high voltage spike during switching turn-off transient. To avoid those effects, therefore, switch currents i_{S1} and i_{S2} are extracted using mathematical functions of oscilloscope such as sum and subtraction, i.e. $i_{S1} + i_{S2} = i_{L1} + i_{L2} - i_{La}$. In $i_{S1} + i_{S2}$, i_{S1} and i_{S2} are easily distinguished from the current slope change.

Measured efficiencies for the two converters are shown in Fig. 16 as black lines. In average, the efficiency of the proposed converter is 5% higher than that of conventional one. Efficiency difference between two converters is proportional to output power because of the increased conduction and switching losses of the circuit components in high current range. Due to the laboratorial limitation, thermal design for heat radiation of switches and inductors does not considered in

<table>
<thead>
<tr>
<th>Power loss</th>
<th>SEPIC step-down</th>
<th>ZETA step-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional</td>
<td>Proposed</td>
</tr>
<tr>
<td>Switching loss</td>
<td>6.66</td>
<td>2.26</td>
</tr>
<tr>
<td>Conduction loss</td>
<td>12.99</td>
<td>8.02</td>
</tr>
<tr>
<td>Total switch loss</td>
<td>19.65</td>
<td>10.29</td>
</tr>
</tbody>
</table>
this prototype circuit. Therefore, efficiency curve shows rapid drop in values in high power range. Assuming that a proper thermal design is implemented thus there is no efficiency degradation from thermal issue, ideal efficiency curve can be expected using loss analysis including switching and conduction losses of switches and dc resistive losses of inductors. Switch losses can be calculated using (39), (40), and (41). Dc resistive losses of inductors, P_L, are determined by:

$$P_L = I_{L, \text{rms}}^2 \cdot r_L \quad (42)$$

where $I_{L, \text{rms}}$ is rms current of inductor in Table I and r_L is dc resistance of inductors of 5mΩ. Those results are shown in Fig. 16 as gray lines. At $P_o=650$W, ideal calculated efficiency of proposed converter is 3.5% higher than measured one.

VII. CONCLUSIONS

This paper researches a new nonisolated bidirectional soft switching SEPIC/ZETA converter which can reduce ripple currents in inductors. The proposed converter has following advantages. 1) Inductor currents have much reduced ripple due to the reduced duration times of main switch and synchronous rectifier. 2) ZCS turn-on and/or turn-off are achieved in all switches with soft current commutation among them. 3) Synchronous rectification and ZVS turn-on and turn-off are achieved in synchronous rectifier. 4) Voltage gains in both step-up and step-down modes can be higher than those of conventional bidirectional SEPIC/ZETA converter owing to the optimized duty ratios of switches. As a result, conduction and switching losses in circuit components were considerably reduced. Lower current rated switches can be also utilized. Filter size can be also minimized. In the experimental results of prototype circuit, operation waveforms and soft switching properties are well agreed with theoretical analysis and simulation results. Measured inductor ripple currents are reduced by 40% and overall efficiency of the proposed converter is 5% higher than the conventional bidirectional SEPIC/ZETA converter, demonstrating the effectiveness of the proposed converter.

REFERENCES

Min-Sup Song received his B.S., M.S., and Ph.D. in Electrical Engineering from Pohang University of Science and Technology, Pohang, Korea in 2005, 2007, and 2011, respectively. He is currently a senior research engineer at Samsung Electro-Mechanics, Suwon, Korea. His research interests includes power conversion and power control systems.

Young-Dong Son received his B.S. and M.S. in Mechanic Engineering from Chonnam National University, Gwang-Ju, Korea in 2004 and 2006, respectively. He is currently a senior research engineer at Samsung Electro-Mechanics, Suwon, Korea. His research interests are power electronics and electric machine control systems.

Kwang-Hyun Lee received his B.S. and M.S. in Electrical Engineering from Ulsan University, Ulsan, Korea in 2009 and 2011, respectively. Since 2011, he has been with Samsung Electro-Mechanics, where he is currently an assistant research engineer. His research interests are design and control of motor, and electric vehicle propulsion.