Two Vector Based Direct Power Control of AC/DC Grid Connected Converters Using a Constant Switching Frequency

Adel Mehdi†, Abdellatif Reama*, and Hocine Benalla†

†Faculté des Sciences de la Technologie, Université des Frères Mentouri Constantine 1, Constantine, Algerie
*Département Ingénierie des Systèmes, ESIEE Paris, Marne-la-Vallée, France

Abstract

In this paper, an improved Direct Power Control (DPC) algorithm is presented for grid connected three phase PWM rectifiers. The new DPC approach is based on two main tasks. First the optimization of the look-up table, which is well-known in conventional DPC, is outlined for selecting the optimum converter output voltage vectors. Secondly a very simple and effective method is used to directly calculate their duty cycles from the power errors. Therefore, the measured active and reactive powers are made to track their references using hysteresis controllers. Then two vectors are selected and applied during one control cycle to minimize both the active and reactive power ripples. The main advantages of this method are that there is no need of linear current controllers, coordinates transformations or modulators. In addition, the control strategy is able to operate at constant switching frequencies to ease the design of the power converter and the AC harmonic filter. The control exhibits a good steady state performance and improves the dynamic response without any overshoot in the line current. Theoretical principles of the proposed method are discussed. Both simulation and experimental results are presented to verify the performance and effectiveness of this control scheme.

Key words: Direct Power Control (DPC), grid connected converters, hysteresis controller, three phase AC/DC rectifiers

I. INTRODUCTION

In recent years, three phase voltage source converters (VSCs) have been widely used in various new active systems interconnected to the grid such as active power filters, utility interfaces with non-conventional energy sources (wind turbines, photo-voltaic, fuel cells, etc.) and power quality improvement units (FACTS). Consequently, VSCs have become an important part of modern power electronics. Generally, these devices must provide a target active and/or reactive power level to the line. Therefore, appropriate power control systems are required.

The conventional control method for VSCs was proposed in [1]. A frequency domain analysis is used to obtain appropriate transfer functions to control the system synthesis [2]. With the high efficiency control applied for induction motors in [3], a new control strategy of pulse-width modulation (PWM) converters [4] can be achieved by controlling the instantaneous active and reactive powers. It uses a switching table to select the optimum output vectors without line voltage sensors. Another study [5] based on virtual flux estimation is presented and investigated under an unbalanced grid. Moreover, direct power control was improved using space vector modulation (DPC-SVM) to control PWM rectifiers with a constant switching frequency [6].

Recently, predictive approaches [7, 8] have attracted more attention for the control of VSCs with minimum distortion and harmonic noise without any overshoot. In [9, 10] the well-known direct power control is combined with predictive selection of the voltage vectors sequence. A new prediction process was proposed in [11] to predict the currents for all of the possible converter vectors, when the error signals of the system are evaluated using a cost function. This method was improved in [12] to operate with a constant switching frequency with no power source voltage sensors. However, this predictive current controller has a poor performance under
component parameter variations [13, 14]. Therefore, to overcome this task, a control method was presented in [15], where the load resistance and inductance are estimated using the least square method of an online parameter calculation. This is done based on digitally sampled instantaneous voltage and currents.

![Three phase PWM rectifier system](image)

Fig. 1. Three phase PWM rectifier system.

An example of a modified switching table is presented in [16], where the DC-link voltage is regulated via fuzzy logic and a PI controller. Improved dynamic response and steady state performance has been achieved in [17] by applying a fixed switching frequency. A dead-beat direct power control strategy for the grid integration of low cost three phase PWM converters was studied in [18]. In addition, the authors of [19] discussed the control of three phase voltage source rectifiers (VSRs) with an arbitrary number of voltage levels.

The Direct Power Control (DPC) strategy can also be applied for doubly fed induction generator (DFIG) based wind turbine systems [20]. A constant switching frequency can be achieved in [21] which eases the design of the power converter and the AC harmonic filter. Three vectors are selected and applied during one control period to reduce both the active and reactive power ripples using RMS ripple minimization [22] and the dead-beat approach [23]. As a result, the switching frequency can be significantly reduced. Furthermore, shunt active power filters have been implemented using direct power control in [24, 25]. They have also been developed with sliding mode control [26] and predictive approach [27]. High Selectivity Filters (HSF) are recommended in [28] to achieve a near sinusoidal source current waveform under distorted or unbalanced grids.

The contribution of this paper to the study of PWM rectifiers connected to a network involves adapting the concept of the duty cycle, well-known in the control of the electric machines in conventional DPC, to improve the quality of electric power. This new approach of DPC can guarantee a constant switching frequency without needing to know the system parameters, like other predictive technologies. This introduces bad behavior when the parameters of the systems are varied, due to temperature changes or by other phenomena such as inductance saturation.

II. MATHEMATICAL MODEL

Fig.1 presents the most popular topology. This universal topology has the advantages of using a low-cost three phase module with a bidirectional energy flow capability, and providing a unity power factor (UPF).

![Equivalent circuit of an AC/DC converter](image)

Fig. 2. Equivalent circuit of an AC/DC converter.

The AC side converter system can be described with the following equation:

$$ V_s = R_i s + L \frac{di}{dt} + V_{inv} \quad (1) $$

Where V_{inv} is the converter voltage, V_s is the AC source voltage, i_s is the line current, and R and L are the equivalent resistance and inductance between the source and the converter, respectively. The DC-link side of the PWM converter can be defined by:

$$ C_\text{dc} \frac{d\psi}{dt} = S_a i_a + S_b i_b + S_c i_c - i_{load} \quad (2) $$

The integration of the line voltage leads to a virtual flux vector as follows:

$$ \psi_z = \int (V_s - R_i s) \, dt \quad (3) $$

Then the angular position of the virtual flux can be expressed by:

$$ \theta = \arctan \left(\frac{\psi_y}{\psi_x} \right) \quad (4) $$

Well-known equations of the instantaneous powers are presented in:

$$ P_s = \frac{3}{2} \left(V_a i_a + V_b i_b \right) \quad (5) $$

$$ Q_s = \frac{3}{2} \left(V_b i_a - V_a i_b \right) \quad (6) $$

III. CONTROL STRATEGY

The DPC method is similar to Direct Torque Control (DTC) for induction motors. Instead of the torque and stator flux, the
instantaneous active and reactive powers are controlled. The following figure shows a scheme of the proposed method.

![Diagram](image)

Fig. 3. Block scheme of DPC-2V.

The two vector based direct power control strategy presented in Fig.3 introduces one active vector and one zero vector during one control period. This is done to minimize both the active and reactive power ripples and to achieve a constant switching frequency. The commands of the reactive power (set to zero) and active power delivered from the outer DC voltage controller are compared with measured values, using two simple band hysteresis controllers (Fig.6). Therefore, the converter switching states are appropriately selected by a switching table based on the instantaneous errors, the line voltage vector position and the duty cycle.

Applying each of the active voltage vectors (Fig. 4) to a converter causes a change in the active and reactive power values. Consequently, for each condition and each sector of the voltage plane, one of the six active voltage vectors that has the best effect is selected (Table.1) the first time. Then it is combined with another zero vector taking account of the minimum variation in the switching state. For example, if the first vector is $v_1(100)$ it is combined with $v_0(000)$ and not with $v_2(111)$.

![Diagram](image)

Fig. 4. Choice of the first voltage vector.

The basic idea of the proposed switching table was to choose the best rectifier voltage vector among the six possible active vectors, as shown in Fig.4, in order to ensure the smooth control of the instantaneous active and reactive power in each sector. For this reason, the new switching table synthesis is based on the sign and magnitude of the change in the active and reactive power for each sector [29].

TABLE I

<table>
<thead>
<tr>
<th>s_p</th>
<th>s_q</th>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
<th>θ_4</th>
<th>θ_5</th>
<th>θ_6</th>
<th>θ_7</th>
<th>θ_8</th>
<th>θ_9</th>
<th>θ_{10}</th>
<th>θ_{11}</th>
<th>θ_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>↓</td>
<td>↑</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>↑</td>
<td>↓</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Assuming balanced line voltages, the rate of the active and reactive power changes in dq coordinates are presented as follows:

$$\frac{dp}{dt} = v_d \frac{di_d}{dt}$$

$$\frac{dq}{dt} = -v_d \frac{di_d}{dt}$$

The stationary coordinates are divided into 12 sectors, as shown in Fig.5, and the sectors can be numerically expressed by:

$$(n - 2)\frac{\pi}{6} \leq \theta_n < (n - 1)\frac{\pi}{6}; n = 1, 2, ..., 12.$$

![Diagram](image)

Fig. 5. Voltage vectors and sector division.

The output signals of the active and reactive power controllers are defined as:

$$s_p = 1 \text{ if } \varepsilon_p \geq \Delta p ; \quad s_p = 0 \text{ if } \varepsilon_p \leq \Delta p$$

To Be Published
\[s_q = 1 \text{ if } \varepsilon_q \geq \Delta q ; \quad s_q = 0 \text{ if } \varepsilon_q \leq \Delta q \] \hspace{1cm} (11)

Where \(\Delta p \) and \(\Delta q \) are the hysteresis bands.

\begin{align*}
\Delta p & \quad \text{for } p_{err} \\
\Delta q & \quad \text{for } q_{err} \\
\end{align*}

Fig. 6. Power hysteresis comparators.

Fig. 7 illustrates a steady-state waveform of the active and reactive powers during one control period for the two vector based DPC strategy.

To reduce the complexity in the duty cycle calculation of the first active vector and to improve system robustness, a simple method that does not require line parameters has been chosen. The expression of this method is given by:

\[P(k + 1) = P^* \] \hspace{1cm} (12)

This method is based on deadbeat control. It aims to make the instantaneous active power equal to its reference value at the end of the period cycle. Suppose that the rising slope \(s_1 \) and the falling slope \(s_2 \) of the instantaneous active power are known for the active and null vectors, as shown in Fig.7. During a small sampling period \(T_s \), the slopes \(s_1 \) and \(s_2 \) can be considered as constants because the dynamics of the reactive power and the DC bus voltage are not fast [30].

Under these conditions, the duration of the active vector for this method can be obtained by solving equation (12):

\[dT_s = \frac{P^* - P_0 - s_3T_s}{s_1 - s_2} \] \hspace{1cm} (13)

Where \(P_0 \) indicates the initial active power value at the kth sampling instant, and \(d \) is the duty ratio of the active vector for the deadbeat control method.

A new method for obtaining the duty cycle is proposed. It eliminates the complexity and dependence of the system parameters. Before giving the expression of the new method, it is necessary to return to equation (13), which can be rewritten as follows:

\[d = \frac{P^* - P_0}{(s_1 - s_2)^T_s} + \frac{-s_2}{s_1 - s_2} \] \hspace{1cm} (14)

The first term in (14) is proportional to the active power error and the second term is proportional to the falling slope \(s_2 \). To eliminate the parameter dependence, it can be assumed that the denominator is constant. However, the second term related to slope \(s_2 \) is still very complex and parameter dependent. It would be natural to make the second term proportional to the error of the reactive power. Considering that the duty ratio is always positive, the final expression considered is given by the following equation:

\[d = \frac{P^* - P_0}{C_p} + \frac{Q^* - Q_0}{C_q} \] \hspace{1cm} (15)

Where \(C_p \) and \(C_q \) are two positive constants. Similar equation can be found in [23]. However, it was applied for DFIG control.

IV. SIMULATION RESULTS

The two vector based direct power control scheme has been simulated using MATLAB/Simulink. The main electrical parameters of the power circuit and control data are given in Table 2. They are the same as those for the simulations and experimental tests, except that the experimental sample time is limited by dSPACE DSP system (DS1104) at 80\(\mu \)s. In order to evaluate the system performance, extensive simulations have been carried out based on the proposed strategy in the steady-state and transient conditions.

Fig. 8. Three phase line currents.
The 2V-DPC provides a good steady-state as can be seen in the sinusoidal waveform of the line current (Figs. 8 and 9) and low total harmonic distortion ($THDi = 1.32\%$).

The simulation results confirm that algorithm meets the IEEE standard requirements of $THDi$, which states that this value should be less than 5%.

Fig. 11 shows the transient response of the proposed 2V-DPC scheme due to a step change of the dc link voltage from 270 to 290V at $t = 1\text{s}$ under unity power factor operation. It can be seen that the reference value of the active power stepped up to 1200W (Fig.10).

Hence, the proposed strategy also provided an excellent dynamic behavior under a step change. It can be seen that the coupling effect between the active and reactive power is practically unobservable.

Fig. 12. Load current.

This figure shows the direct current absorbed by the resistive load in the DC-link side, with an instantaneous variation at the time $t = 1\text{s}$ to react to the requested change in the voltage at the terminal of the capacitor. The rapidity of the control system is based on the Kp and Ki parameters of the PI controller dedicated to the control of the DC-link voltage.

Fig. 13. Duty cycle.

Fig.13 gives the duty ratio of the first active vector obtained using the dead-beat strategy, in order to reduce the instantaneous active and reactive power ripples providing a constant switching frequency.

Fig. 14. Three phase line currents $F_c = 800(\text{Hz}).$

Fig.14 shows simulation results of the proposed DPC with a low constant switching frequency. The sampling frequency is decreased to 800 Hz and the test condition is the same as that in Fig.8. It can be seen that the steady state performance is still acceptable considering the low switching frequency.

Fig. 15. Three phase line currents ($L^* = 1.2L$, $R^* = 1.2R$).
In this part, the robustness against line parameter variations is tested. The line resistance and inductance may differ from the values used in the control system due to the influence of temperature, magnetic saturation, etc.

The line resistance and inductance used in the control system are increased by 20% (Fig.15) of their actual values. In the same way, the line parameters are decreased by 20% (Fig.16).

There is no significant difference between the steady and dynamic responses when compared to the result shown in Fig.8. This demonstrates the strong robustness to parameter variations.

The line current is stable and free of oscillations in the first case (Fig.15). However, when a lesser inductance value is applied in the control algorithm, the system begins oscillating, as shown by Fig. 16. The change of the load current through the inductance filter must take some time if the inductance value is more important. The high stability margin is due to the independence of the duty cycle determination to parametric variations.

V. EXPERIMENTAL RESULTS

An experimental laboratory setup was built in the laboratory. It consists of a commercial SEMIKRON converter controlled by a dSPACE DS1104 board inserted into a PC, a variable coupling inductance in the grid side and a fixed resistor as a load. A typical lab workbench is shown in Fig.24.

Is should be noted that the experimental results are obtained using control desk software incorporated with DSpace DS1104 package due to hardware limitations. Therefore, the data information is saved as a file in the (.mat) format. Then it is recovered and processed in Matlab to present it properly.

Fig.17 shows experimental result of the three phase line current absorbed by the PWM voltage source converter. The 2V-DPC provides a good current waveform with a THD=5.05% when using a large experimental sample time and an imperfect spectrum of the line voltage THD=3.14% as shown in Fig.23.

It can be seen from Fig.18 that the behavior of the 2V-DPC is not very suitable due to its reduced values of the sampling frequency (80μs). The active and reactive power ripples are increased when a small sampling frequency is used in the model.

The DC link voltage increases to compensate for the real power supplied by the source. Fig.19 shows the fast and accurate tracking of the voltage reference value.

The criteria for choosing C_p and C_q is a compromise between the dynamic response and the steady-state performance. Usually, a higher value provides less steady ripples. However, the dynamic performance is degraded. The extensive simulation results indicate that the rated power value of the system is a good starting point for C_p and C_q to achieve a good choice between the steady and dynamic performance. In other words, the duty ratio can be seen as the sum of the per unit deviations in the active and reactive power. It should be noted that the rated value of the system is just a quick starting point for C_p and C_q, and that the designer can
tune them according to their specific requirements. Nevertheless, it is found that variations of C_p and C_q do not cause significant differences in the system performance [23].

Fig. 19. Step change of the DC-link voltage.

![Fig. 19. Step change of the DC-link voltage.](image)

Fig. 20. Duty cycle.

![Fig. 20. Duty cycle.](image)

Fig. 21. Sector information.

![Fig. 21. Sector information.](image)

Fig. 22. Line voltage and current.

![Fig. 22. Line voltage and current.](image)

The harmonic impedance of the electrical distribution system ensures that the harmonic currents generated by the load produce harmonic voltages (Eh = Ih x Zh). The transformers and impedance of the power supply circuits cause maximum voltage distortion for non-linear loads.

The use of non-linear loads on the utility grid and the lack of effective isolation for poor quality distribution systems may cause a non-ideal supply voltage as shown in Fig. 23. For this reason, it is preferable to use an isolation transformer to insulate the propagation of the harmonics.

TABLE II

<table>
<thead>
<tr>
<th>Parameters Used in the Simulation of DPC-2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
</tr>
<tr>
<td>Line to line voltage (RMS)</td>
</tr>
<tr>
<td>Line frequency</td>
</tr>
<tr>
<td>Line resistance</td>
</tr>
<tr>
<td>Load resistance</td>
</tr>
<tr>
<td>DC-link capacitance</td>
</tr>
<tr>
<td>Line inductance</td>
</tr>
<tr>
<td>Constants C_p, C_q</td>
</tr>
<tr>
<td>Simulation sample time</td>
</tr>
<tr>
<td>Experimental sample time</td>
</tr>
<tr>
<td>Switching frequency</td>
</tr>
<tr>
<td>DC-link voltage</td>
</tr>
</tbody>
</table>

![Fig. 23. Spectrum harmonic of the line voltage.](image)
VI. CONCLUSION

This paper has described a new direct active and reactive power control strategy for three phase PWM rectifiers, which operates at a constant switching frequency thanks to the PWM generator and to a modified look-up table applying two vectors in one control period. The duration of each vector is obtained using the power errors based the dead-beat method, which brings the benefits of simplicity and robustness against line parameter variations. The goal of this study is to alleviate the typical drawbacks of the standard DPC technique, in particular the variable switching frequency. Furthermore, steady state and dynamic tests have verified the operation and performance of the developed control process.

Finally, simulation and experimental results confirm the effectiveness of the proposed method for providing precise power control with a low total harmonic distortion (THD), and small oscillations in the active and reactive powers.

REFERENCES

Adel Mehdi was born in Mila, Algeria, in 1988. He received his B.S. degree from the Department of Electrical Engineering and his M.S. degree in the Management and Transformation of Electrical Energy from the Faculty of Sciences and Technology, Université des Frères Mentouri Constantine 1, Constantine, Algeria, in 2009 and 2011, respectively. He is presently a Ph.D. student and a Member of the Electrical Engineering Laboratory of Constantine (LEC). In 2012, he joined the Université des Frères Mentouri Constantine 1, as an Assistant Professor in the Department of Exact Sciences. From October 2015 to March 2017, he was a Visiting Professor in the University of Paris-Est-Marne-la-Vallée (UPEM), Paris, France. His current research interests include power electronic converters, matrix converters, active and hybrid filters, the application of power electronics in renewable energy systems AC motor control, reactive power control, harmonics, and power quality compensation systems. He has been affiliated with the IEEE as a Student Member since 2012, and with the Francophone University Association (AUF) since 2011.

Abellatif Reama was born in Morocco, in 1958. He received his Ph.D. degree in Electrical Engineering from National Polytechnic Institute of Toulouse, Toulouse, France, in 1987. He is presently working as an Associate Professor in the Department of Electrical Engineering at the Université Paris-Est, ESIEE Paris, Marne-la-Vallée, France. His current research interests include several aspects of electrical engineering with a special focus on power electronics and control design.

Hocine Benalla was born in Constantine, Algeria, in 1957. He received his B.S. degree from the University of Sciences and Technology of Oran, Oran, Algeria, in 1980; his M.S. and Ph.D. degrees in Power Electronics from the National Polytechnic Institute of Toulouse, Toulouse, France, in 1982 and 1984, respectively; and his Ph.D. degree in Electrical Engineering from the University of Jussieu, Paris, France, in 1995. Since 1996, he has been a Professor in the Department of Electrotechnics, Université des Frères Mentouri Constantine 1, Constantine, Algeria. His current research interests include active power filters, pulse width modulation (PWM) inverters, electric machines, and ac drives.