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Abstract  

 

Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short 
service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the 
frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand 
power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system 
still has rapidity and reliability. The distributed power system (DPS) of EV requires DC–DC converters to achieve the desired 
voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of 
DPS. In this study, closed-loop impedances of interleaved half-bridge DC–DC converter and phase-shifted full-bridge DC–DC 
converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for 
permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved 
Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are 
provided to demonstrate the feasibility of the energy management system and the control method. 
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I. INTRODUCTION 

The increasingly serious environmental pollution and 
energy depletion problems causes the urgency for new energy. 
Fuel cell (FC) is a promising distributed power supply; it has 
the advantages of high efficiency and low pollution, but has 
the disadvantages of poor dynamic performance and short 
service life [1]-[3]. Super capacitor (SC) offers an alternative 
approach to manage power flows within various electrical 
system applications, such as uninterruptible and portable 
power supplies, renewable energy generation systems, and 
hybrid electric vehicle (HEV). SC is characterized by high 
efficiency, fast charging and discharging, extended cycle life, 
relatively high-specific power, and wide operating 
temperature range; thus, SCs are suitable in compensating the 
disadvantages of FCs [4]-[6]. This study presents a hybrid 
power supply system with PEMFC as the main power supply 
and an SC pack as the auxiliary power supply. 

 
Fig. 1. Structure and energy flows of fuel cell hybrid electric 
vehicle (FCHEV) energy system. 

 
The FC–SC hybrid power system is shown in Fig. 1, which 

contains an FC pack, an SC pack, a source converter, a 
bidirectional converter, and an inverter load. In this system, 
energy is delivered from the FC to the DC bus. The inverter 
transports energy in both directions. Meanwhile, the 
bidirectional converter compensates for the shortcomings of 
the FC due to poor dynamics and failure to recycle energy.  

The load of the electric vechicle (EV) is variable and 
random in response to unsteady traffic, including frequent 
acceleration, deceleration, uphill, or downhill runs. Therefore, 
the energy management strategy must add a regulation 
mechanism to ensure power sharing strategy for a significant  
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Fig. 2. Structure, control method, and energy flows of FC–SC hybrid driving system in different operating modes. 
 

reduction in the variations of FC current, which is beneficial 
to its service life. This strategy is equivalent to requiring the 
reduction of the high-frequency variations of the FC current 
[7]-[9]. In this study, a high-pass filter (HPF) and a low-pass 
filter (LPF) are used in the power system to realize the 
frequency decoupling control method. 

DC–DC converters with feedback control have been 
widely used in applications, such as space stations, aircraft, 
shipboards, communication systems, renewable energy 
systems, and hybrid vehicles. These applications require tight 
output regulation, fast response, and high power quality. 
However, this feedback control makes the input power 
instantaneously constant; thus, the converter acts as a 
constant power load with negative impedance characteristic. 
This characteristic may destabilize the operation of the entire 
system. The problem on the interaction of the cascaded 
electric system is well known, and numerous works have 
already been published to explain this phenomenon [10]-[16]. 
The cascaded system may become unstable because of the 
interaction between the subsystems, although each subsystem 
may operate properly as an individual system [17]. The 
impedance-based method is effective for stability analysis of 
the cascaded distributed power system.  

This paper is organized as follows. The energy 
management strategy and stability analysis method are 
reviewed in Section II. Derivations of two converters and 
inverter for permanent magnet synchronous motor (PMSM) 

impedance are presented in Section III. Stability analysis, 
adjustment, and system test are discussed in Section IV. 
Conclusions are presented in Section V. 

 

II. REVIEW OF ENERGY MANAGEMENT STRATEGY 
AND STABILITY ANALYSIS METHOD 

A. Review of Energy Management Strategy in HEV 
Energy System 

At present, multisource supply systems are a subject of 
extended research investigation using advanced control 
methods, as well as the electrical vehicular applications. In 
the last decade, different energy management strategies for 
FCHEV power systems have been reported [18]-[23]. In [18] 
and [19], the system is appropriately controlled by a 
rule-based strategy; however, the performances of the energy 
system depend on previous experiences. In [22] and [23], the 
system is appropriately controlled by a model predictive 
control strategy and neural networks strategy, respectively. 
However, these strategies are extremely complex and require 
large computation. An energy system based on a classical PI 
controller [20] has been proposed recently, which is easily 
tuned online for better tracking and does not require any 
expert knowledge. In this study, the PI controller and 
frequency decoupling methods are adopted to ensure that the 
main source provides low-frequency demand power, whereas 
the other sources deal with high-frequency demand power 
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that can protect the FC and ensure rapidity of the system 
simultaneously. 

Frequency decoupling control method was first used in wind 
and photovoltaic generator system. Classical wind or solar 
energy conversion systems are usually passive generators. The 
generated power does not depend on the load requirement but 
entirely on the fluctuant power condition [30]–[31]. The 
frequency decoupling control method has been adopted to 
achieve maximum efficiency and stable output simultaneously. 
In the EV power systems, the main source of output power 
must be stable, while the demand power of load is fluctuant, 
which is similar to the generation systems. This control method 
is also applicable to the EV power system. Some articles on 
frequency decoupling control method in FCHEV energy 
system have been published in [7]–[9], [32]–[34].  

The FC–SC hybrid energy system has four possible 
operating modes, which are shown in Fig. 2. A brief 
introduction is provided in the following description. 

Operating mode I [Fig. 2(a)]: A sudden increase in the 
demand energy of the motor, such as starting and accelerating 
decreases the DC bus voltage, which affects the stability of 
both the driving and energy systems. The SC and FC must 
provide more energy to compensate for the change. In this 
mode, both the source and bidirectional converter are 
controlled by the frequency decoupling control method. 
Closed-loop PI regulators are adopted to ensure the rapidity 
and stability of the DC bus voltage.  

Operating mode II [Fig. 2(b)]: When the demand energy of 
the motor is nearly constant, the demand power of the load is 
entirely provided by the FC, which can be realized 
automatically by the frequency decoupling control method. 
Mode II can be regarded as the special conditions of Mode I; 
however, Mode II is more likely to occur in actual conditions.  

Operating mode III [Fig. 2(c)]: When the voltage of SC is 
lower than the given value, Mode III should appear to ensure 
that the SC has sufficient energy for potential Mode I. In this 
mode, the source converter is controlled by the frequency 
decoupling method, and the bidirectional converter is 
controlled by constant current charging. This mode should 
occur at a smoothly running period because it cannot deal with 
the changing load in time but can guarantee the safety of the 
FC.  

Operating mode IV [Fig. 2(d)]: The motor can assist a 
mechanical brake when the EV needs to stop. Simultaneously, 
regenerative energy and energy restored in the DC bus can be 
recycled to the SC. In this mode, the DC bus voltage does not 
need to maintain the rated value. The regenerative energy will 
not be restored if the SC is already fully charged.  

B. Introduction of Stability Analysis Method on EV 
Energy System 

Although many energy management methods have been 
proposed and tested, the stability of the power system under  

 
Fig. 3. (a) Typical structure of cascaded electric system. (b) 

General form of the multi-input multi-output (MIMO) converter 

system. 

 
these strategies did not attract much attention. Attention has 
been provided to high-level performances, such as energy 
assumption, SOC of power source, and vehicle acceleration 
performance. Conversely, low-level performances, such as 
output current and DC bus voltage, which are based on 
topology structure of the energy system, have not been 
analyzed and adjusted. In this study, the stability of the 
low-level performance is analyzed. 

Given that the small signal model can be achieved, as 
shown in Fig. 4, the Nyquist criterion or other stability 
criterion based on frequency characteristics can be adopted to 
assess the stability of the subsystems individually. However, 
these criteria cannot easily assess the stability of the entire 
system. Therefore, the impedance-based method, which is 
effective for the stability analysis of complex systems, is 
adopted in this study.  

The impedance-based method is effective for assessing the 
stability of the cascaded electric system. For the typical 
cascaded system in Fig. 3(a), the ratio of the output 
impedance of the source converter Zo_s and the input 
impedance of the load converter Zin_L can equivalently 
represent the loop gain of the cascaded system. Moreover, 
both the source and load converters are individually stable, 
and the amplitude of Zo_s is less than Zin_L in the entire 
frequency range; thus, the stability of the cascaded system is 
guaranteed. This criterion is proposed by Middlebrook [24]. 
Although this criterion is effective in assessing the stability of 
the cascaded electric system, the application of the criterion  
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Fig. 4. Closed-loop small-signal models of DC–DC converter: (a) phase-shifted full-bridge (PSFB) converter. (b) Boost converter. 
 
in MIMO converter system is no longer useful. The energy 
system in this study is a multi-input single-output converter 
system, which is a special form of the MIMO converter 
system. Therefore, the classical Middlebrook criterion is no 
longer applicable. 

Recently, it has been found that any converter in a DC 
distributed power system (DPS) is either a bus voltage control 
converter (BVCC) or a bus current control converter (BCCC). 
BVCC refers to a converter that controls or affects its bus-side 
port voltage. BCCC refers to a converter that controls or affects 
its bus-side port current. Based on BVCC and BCCC, the 
general form of a MIMO converter system is obtained, as 
shown in Fig. 3(b). m (m≥1) BVCCs and n (n≥1) BCCCs are 
connected in parallel. Then, the following equation is obtained: 
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(1) 

If the converters are all individually stable, and the 
amplitude of ZBCCC is greater than ZBVCC in the entire frequency 
range, the stability of the cascaded system is guaranteed. On 
the basis of the criterion in [25], the stability analysis of the 
FC–SC hybrid power system can be assessed and adjusted. In 
Operating modes I and II, the source converter and 
bidirectional converter are controlled by the high- and 
low-frequency components of the voltage difference, 
respectively. Thus, these converters are both BVCC. In 
Operating mode III, the source converter is controlled by the 
low-frequency component of voltage difference, and the 
bidirectional converter is controlled by the current difference. 
Thus, the source converter is BVCC, whereas the bidirectional 
converter is BCCC. In Operating mode IV, the two converters 
are both BCCC. Given that the stability of the subsystems in 
this power system have already been studied and accepted, this 
study focuses on the stability of the interaction in the entire 
system. Therefore, the analytical expression of the input 

impedance of the inverter for the motor drive system and the 
output impedance of the two converters must be established, 
which is presented in Section III. 

 

III. DERIVATION OF CONVERTERS AND 
INVERTER FOR PMSM IMPEDANCES 

The stability criterion for DC DPS requires the closed-loop 
impedance of converters. The closed-loop small-signal models 
of the source and bidirectional converters with frequency 
decoupling control are shown in Fig. 4. These models use an 
LPF and HPF to limit the variations of FC current, and 
compensate for the delay of FC. The filters used in the control 
method may greatly influence the closed-loop impedance. Thus, 
in this section, converter impedances and load under the 
frequency decoupling control method are derived. 

A. Derivation of Source Converter Closed-loop 
Impedance with LPF 

The PSFB PWM converter is adopted as the source 
converter in this study. According to previous studies in [26], a 
small-signal model includes both the duty cycle loss of the 
secondary side of the transformer and the equivalent series 
resistance of the inductor and capacitor, as shown in Fig. 4(a). 
Then, the transfer function of the output filter is derived as 
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where L and C are output filter inductance and capacitance, 
respectively. Rl and Rc are the equivalent series resistances of 
inductor and capacitor, correspondingly. 

The input impedance of the output filter is expressed as: 

c
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1
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
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.                (3) 

 

The output impedance of the output filter is expressed as 
follows: 
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where n is the transformer ratio, and Vi is the input voltage. 
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where Rd=4n2Lrfs, Lr is the resonant inductance, and fs is the 
switching frequency. The open-loop output impedance of the 
PSFB power stage is 

2
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According to the control block diagram shown in Fig. 4(a) 
and the definition of the closed-loop output impedance, the 
closed-loop output impedance can be obtained. Given that the 
current loop is set to rapidly track the given front value, the 
entire current loop can be treated as a proportion component 
KPI_I by reducing the time constant of the current loop. The 
transfer function of an LPF is defined as GLPF. The closed-loop 
output impedance of PSFB DC–DC converter is 

1 _
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B. Derivation of Bidirectional Converter Closed-loop 
Impedance with HPF 

This paper adopts the interleaved half-bridge DC–DC 
converter as the bidirectional converter. The two-phase 
converters share the same control and main circuit 
(half-switching period delay of interleaving can be ignored in 
the derivation); thus, the two phases of the parallel interleaved 
DC–DC converter are relatively independent and completely 
symmetrical. Therefore, the output impedance of the parallel 
interleaved boost converter is equal to half the value of that in 
the boost circuit. Based on this analysis, the output impedance 
of the interleaved converter is obtained from the boost 
converter. 

Similar to the derivation of the source converter, the 
open-loop output impedance of the bidirectional converter can 
be achieved by the small-signal analysis. The small-signal 
model of boost circuit is shown in Fig. 4(b). 

According to the small-signal model, the open-loop output 
impedance of the boost circuit in the CCM mode can be 
obtained as follows: 
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where L' and C' are output filter inductance and capacitance, 
and Rl' 
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are equivalent series resistances of the inductor 
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Similar to the derivation of the source converter, the entire 
current loop is treated as a proportion component LPI_I. 
According to the control block diagram shown in Fig. 4(b) and 
the definition of the closed-loop output impedance, the 
closed-loop impedance of the boost converter in the CCM 
mode is 
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Finally, the output impedance of the parallel interleaved 
boost converter in CCM mode is expressed as: 
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C. Closed-loop Impedance of the Inverter for PMSM with 
Id=0 Control Method  

The classical space vector control method is adopted in this 
paper. The average model and small-signal analysis can be 
used to derive the input impedance of the system [27]–[29]. 
With the use of Park transformation, the voltage, current, and 
electromechanical characteristic equations can be modeled in 
the rotating d–q domain, as shown as follows: 
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where Vd and Vq are equivalent voltages of the motor in the d–q 
domain; Id and Iq are equivalent currents of the motor in the d–
q domain; Rd, Rq, Ld, and Lq are equivalent resistances and 
inductances of the motor in the d–q domain; P is the number of 
the pole pairs; ω is motor speed; Ψ is the rotor flux linkage; J is 
the motor inertia; and Te and TL are electromagnetic torque and 
load torque, respectively. 

The following equation is defined:  

d d
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The small-signal model of the d–q current is shown in Fig. 5. 
If the inverter does not experience power loss, the power 
balance equation is 

dc dc d d q q

3
( )

2
V I V I V I  ,            (15) 
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Fig. 5. Small-signal model of the d–q current loops in the inverter for PMSM. 

 

where Vdc is the voltage of the DC bus, and Idc is the current of 
the DC bus, which flows into the inverter. Then, the small 
signal relation between DC bus variables and d–q domain 
variables can be obtained.  
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Variables with the subscript 0 denote the steady-state value 
of the variables. To simplify the complexity of the derivation, 
the speed loop regulator is neglected because it is remarkably 
slower than the current loop. The current loop model in Fig. 5 

and Equation (16) is used to eliminate , , ,d q d qI I V V
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 are assumed to be zero. The small-signal input 

impedance can be derived as: 
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When the closed-loop impedances of the converters and 
inverter have been derived, system stability of the system can 
be analyzed using the impedance-based method. Analysis and 
test are shown in the following section. 
 

IV. STABILITY ADJUSTMENT AND TEST OF THE 

ENERGY SYSTEM 

A. Analysis and Adjustment of the Energy System Stability 

Fig. 2 shows the topology of the FCHEV energy system.  

TABLE I 
MOTOR SPECIFICATIONS 

Parameters Values 

Rated speed 2000 rpm 

Rated torque 10.5 N·m 

Rated current 6.8 A 

Number of pole-pairs 3 

Stator resistance 0.5 Ω 

Q-axis inductance 8.5 mH 

D-axis inductance 4.5 mH 

Inertia constant 3.1e−3 kg·m2 

Switching frequency 5 kHz 

 
TABLE II 

POWER SUPPLIES SPECIFICATIONS 

Parameters Values 

FC voltage at 0 A 42 V 

FC voltage at 1 A 35 V 

FC nominal point (52 A, 24.23 V) 

FC maximum point (100 A, 20 V) 

FC dynamics preset No 

SC capacitance 1 F 

SC rated voltage 80 V 

SC initial voltage 70 V 

SC surge voltage 100 V 

 

In this system, the source converter is a PSFB PWM DC–
DC converter, whereas the bidirectional converter is an 
interleaved half-bridge DC–DC converter. A PEMFC–1.26 
kW–24 VDC hydrogen FC model is adopted. The capacitance  
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Fig. 6. Bode plots of each part of the energy system impedances: (a) Open- and closed-loop impedances of the source converter. (b) 
Open- and closed-loop impedances of the bidirectional converter. (c) ZBCCC and ZBVCC of the energy system at different loads and 
different DC bus capacitances. 
 
value and rated voltage of the SC are 1 F and 80 V, 
respectively. The parameters of PMSM and the two power 
supplies are shown in Tables I and II, respectively 

Given that the main purpose of this study is to verify the 
stability of the energy system using the frequency decoupling 
control method, the stability analysis and simulation were only 
conducted in Operating modes I and II. Therefore, the voltage 
of SC is assumed not to be extremely low in the entire 
operating process. 

The impedances of the two converters and the motor inverter 
are shown in Fig. 6. The open- and closed-loop impedances of 
the source converter are shown in Fig. 6(a) in blue and red 
curves, respectively. The open-and closed-loop impedances of 
the bidirectional converter are shown in Fig. 6(b) in blue and 
red curves, respectively. These two figures show that the open 
and closed-loop impedances of the converter are different. 
ZBCCC and ZBVCC of the energy system at different loads and 
different DC bus capacitances are shown in Fig. 6(c). The red 
curve represents the impedance when the load is TL=1 N∙m, 
ω=150rad/s. The violet curve represents the impedance when 
the load is TL=5N∙m, ω=150rad/s. The figure shows that the 
Bode plots of the inverter for motor impedance are similar 
despite the different loads, especially at the middle and high 
frequencies. According to the basic theory in [25], the ZBVCC 
and ZBCCC of the system can be obtained using Equation (19). 
The Bode plots are shown in Fig. 6(c). Blue and green curves 
represent ZBVCC; red and violet curves represent ZBCCC. 
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Fig. 6(c) shows the intersection between |ZBVCC| and |ZBCCC| 
at approximately 400 Hz when Cbus=800 μF (the capacitance of 
the DC bus). In this case, the FC–SC hybrid energy system will 
be unstable and oscillate. Although many existing solutions can 
eliminate the intersection, only the most practical method in 
reducing |ZBVCC| is utilized. Cbus can be adjusted to realize this 
target. If the value of Cbus is adjusted from 800 μF to 2000 μF, 

the condition wherein the amplitude of the improved ZBVCC is 
lower than that of the ZBCCC in the entire frequency range can 
be obtained, as shown in Fig. 6(c) (green curve represents 
ZBVCC when Cbus=2000 μF). According to the impedance-based 
stability analysis theory, the system is stable in this case. 

 

The stability adjustment results of the system, shown in Fig. 
7, verify the conclusion above, where the waveforms of Udc, IFC, 
and ISC are used to show the oscillations. Fig. 7(a) illustrates 
that although the power system is stable before t=0.6 s (TL=1 
N∙m, ω=150 rad/s, the SC does not have an output in the stable 
situation), oscillations in these waveforms appear after t=0.6 s 
(TL suddenly changes to 5 N∙m at 0.6 s); thus, the system is 
unstable. By adjusting Cbus from 800 μF to 2000 μF, the 
voltage and currents, shown in Fig. 7(b), are well damped, and 
the oscillations in the waveforms disappear; thus, the system 
has better dynamic stability properties in this case. The 
dynamic of the motor shown in Fig. 9 is acceptable. Thus, 
2000 μF is an acceptable adjustment for this application. 

B. Simulation Test of the System 

When the stability has been assessed and adjusted, the test of 
the energy system based on the frequency decoupling control 
method can be performed. Simulation has been done in this 
study, and the simulation conditions are as follows: 

 

• The total simulation time is set to 2 s.  
 

• When 0≤t<0.6 s, set TL=1 N∙m, and the demand speed of 
the motor is set to 150 rad/s (approximately 1433 rpm). 

 

• When 0.6 s≤t<1.5 s, set TL=5 N∙m with the demand speed 
unchanged.  

 

• When t=1.5 s, the motor brakes at once. 
 

The output waveforms of the SC and FC in the test are 
shown in Fig. 8. Red and blue curves represent the SC and FC, 
respectively. When 0≤t≤t1, FC and SC output high power 
together, until the DC bus voltage reaches the given value. 
When t1<t<t2, the demand power is approximately maintained 
constant; thus, the FC provides the power alone. When t=t2, a 
sudden increase in TL occurs, and the demand power suddenly  
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Fig. 7. DC bus voltage (Udc) waveform, FC, and SC current waveforms (IFC, ISC) using frequency decoupling control method. (a) When 
Cbus is equal to 800 μF.(b) When Cbus is adjusted to 2000 μF. 
 

 
Fig. 8. FC and SC current waveforms using frequency decoupling control method. FC: blue, SC: red.  
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Fig. 9. DC bus voltage (Udc), motor speed (ω), and motor electromagnetic torque (Te) waveforms. 
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increases; thus, the FC and SC provide low- and 
high-frequency components of the demand power, 
respectively. 

In Fig. 8(a) and 8(c), the change rates of the FC current and 
voltage are evidently slower after t=0.6 s. FC delay time is 
approximately 0.5 s, which is beneficial to maintain the service 
life. Fig. 9 shows that the DC bus and the motor are still rapid 
and stable during the delay time. After the delay time, the FC 
output current can track the given precisely. Figs. 8(a), 8(b), 
and 8(d) show the SC output current, power, and voltage, 
respectively. The maximum output power of the SC reaches 4 
times the maximum output power of the FC in this test, which 
makes full use of the large discharging current of the SC. When 
the demand power is approximately constant, SC output will be 
automatically adjusted to 0. When t=t4, the motor brakes. The 
energy in the driving system can be recycled, which is shown 
in the SC voltage in Fig. 8(d). The high efficiency of FCs, 
together with the energy recovery function of the SC can 
greatly increase the energy system efficiency. 

Fig. 9 shows the operation of the DC bus and the motor. The 
driving system can run smoothly with the front energy system 
in the entire test. The waveforms of the motor can be stable by 
adjusting the parameters of the PI regulator. Given that the 
motor control unit is not the focus in this study, the motor is 
only used to test the rapidity and stability of the energy system 
in this study, which is set to a harder test than the actual 
situation. 

In summary, the FC–SC hybrid power system can improve 
the exploitation of the FC, and maintain the rapidity and 
stability of the energy system and the driving system 
simultaneously using the frequency decoupling control method. 
The low-frequency demand power is provided by the FC, 
which leads to slow current and voltage changes. The SC plays 
an important role due to its advantages of fast discharging rate 
and ability to recycle energy. With the stable and rapid energy 
system, the performance of the motor load is acceptable. The 
test result agrees with the stability analysis result described in 
this article. 

 

V. CONCLUSIONS 

This paper introduced an improved Middlebrook criterion 
to the FCHEV energy system. The dynamic stability of the 
energy system was assessed and adjusted using frequency 
decoupling control method. Closed-loop impedances of two 
converters and the inverter for PMSM load were derived. 
HPF and LPF were used to separate different frequency 
components of demand power. The multisource supply 
system can improve FC exploitation, and maintain the 
rapidity and stability of the energy system and the driving 
system simultaneously using the frequency decoupling 
control method. Given that this study focuses on theoretical 
analysis, further research should be made in experimental and 
actual road condition tests. 
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